Assembly and Dynamics of Transcription Initiation Complexes.

IF 12.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Meagan N Esbin, Trinity Cookis, Sathvik Anantakrishnan, Abrar A Abidi, Jonathan Karr, Claudia Cattoglio, Xavier Darzacq, Robert Tjian
{"title":"Assembly and Dynamics of Transcription Initiation Complexes.","authors":"Meagan N Esbin, Trinity Cookis, Sathvik Anantakrishnan, Abrar A Abidi, Jonathan Karr, Claudia Cattoglio, Xavier Darzacq, Robert Tjian","doi":"10.1146/annurev-biochem-072324-035226","DOIUrl":null,"url":null,"abstract":"<p><p>Gene expression is essential for life and development, allowing the cell to modulate mRNA production in response to intrinsic and extracellular cues. Initiation of gene transcription requires a highly regulated molecular process to assemble multisubunit complexes into the preinitiation complex (PIC). Attempts to visualize these processes have been driven largely by electron microscopy, with near atomic-level resolution producing static snapshots complemented by low-resolution fluorescence cell imaging. Here, we review how new advances in superresolution single-molecule imaging in live cells can track transcription across vast spatiotemporal scales. We discuss how recent imaging research has fundamentally recast our understanding of PIC assembly from a stable, ordered process to one constantly in flux, dominated by multivalent weak interactions. We also discuss future advancements that will further expand our ability to measure PIC assembly in concert with cellular behavior, predict complex interactions computationally, and target undruggable transcription factors to treat human disease.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biochem-072324-035226","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene expression is essential for life and development, allowing the cell to modulate mRNA production in response to intrinsic and extracellular cues. Initiation of gene transcription requires a highly regulated molecular process to assemble multisubunit complexes into the preinitiation complex (PIC). Attempts to visualize these processes have been driven largely by electron microscopy, with near atomic-level resolution producing static snapshots complemented by low-resolution fluorescence cell imaging. Here, we review how new advances in superresolution single-molecule imaging in live cells can track transcription across vast spatiotemporal scales. We discuss how recent imaging research has fundamentally recast our understanding of PIC assembly from a stable, ordered process to one constantly in flux, dominated by multivalent weak interactions. We also discuss future advancements that will further expand our ability to measure PIC assembly in concert with cellular behavior, predict complex interactions computationally, and target undruggable transcription factors to treat human disease.

转录起始复合物的组装和动力学。
基因表达对生命和发育至关重要,允许细胞根据细胞内和细胞外的信号调节mRNA的产生。基因转录的起始需要一个高度调控的分子过程,将多亚基复合物组装成起始前复合物(PIC)。试图可视化这些过程主要是由电子显微镜驱动的,接近原子水平的分辨率产生静态快照,辅以低分辨率的荧光细胞成像。在这里,我们回顾了活细胞超分辨率单分子成像的新进展如何跨越巨大的时空尺度跟踪转录。我们讨论了最近的成像研究如何从根本上改变了我们对PIC组装的理解,从一个稳定的、有序的过程到一个不断变化的、由多价弱相互作用主导的过程。我们还讨论了未来的进展,这些进展将进一步扩大我们测量PIC组装与细胞行为相一致的能力,预测计算复杂的相互作用,以及靶向不可药物的转录因子来治疗人类疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of biochemistry
Annual review of biochemistry 生物-生化与分子生物学
CiteScore
33.90
自引率
0.00%
发文量
31
期刊介绍: The Annual Review of Biochemistry, in publication since 1932, sets the standard for review articles in biological chemistry and molecular biology. Since its inception, these volumes have served as an indispensable resource for both the practicing biochemist and students of biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信