Genetic and pharmacological targeting of Snail inhibits atherosclerosis by relieving intraplaque endothelium dysfunction and associated inflammation.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bo-Xue Ren, Zhao-Lan Zeng, Li Deng, Jia-Meng Hu, Ming-Zhen Chen, Hao-Wei Jiang, Chen-Zi Zang, Shen-Tong Fang, Stephen J Weiss, Jie Liu, Rong Fu, Zhao-Qiu Wu
{"title":"Genetic and pharmacological targeting of Snail inhibits atherosclerosis by relieving intraplaque endothelium dysfunction and associated inflammation.","authors":"Bo-Xue Ren, Zhao-Lan Zeng, Li Deng, Jia-Meng Hu, Ming-Zhen Chen, Hao-Wei Jiang, Chen-Zi Zang, Shen-Tong Fang, Stephen J Weiss, Jie Liu, Rong Fu, Zhao-Qiu Wu","doi":"10.1038/s41401-025-01519-5","DOIUrl":null,"url":null,"abstract":"<p><p>The intraplaque endothelium dysfunction and associated inflammation contribute to the progression of atherosclerosis. We previously show that zinc-finger transcription factor Snail is predominantly expressed in embryonic vascular endothelial cells (ECs), and deletion of Snail in ECs induces severe defects in vascular development and thus causes embryonic lethality. Snail is essentially absent at postnatal stage, and inducible deletion of Snail in ECs has no impact on physiological angiogenesis in postnatally developing or adult mice. In this study we investigated whether Snail was reactivated in vascular ECs during pathologically angiogenic process (e.g. the formation of atherosclerotic plaque) or could play a functional role in atherosclerosis progression. We showed that the expression levels of Snail were significantly elevated in ECs of human and mouse atherosclerotic plaques, and associated with the disease severity. In the accelerated and canonical mouse models of atherosclerosis, tamoxifen-inducible, EC-specific Snail deletion significantly reduced intraplaque endothelial dysfunction, inflammation and lipid uptake accompanied by enhanced plaque stability. By conducting scRNA-sequencing in ECs of ApoE<sup>-/-</sup>Snail<sup>iΔEC</sup> versus ApoE<sup>-/-</sup>Snail<sup>fl/fl</sup> arterial vessels, we demonstrated that Snail deletion significantly decreased histone acetylation on Ccl5 and Cxcl10 promoters, thereby decreased CCL5/CXCL10-driven vascular damage and inflammation. Administration with recombinant CXCL10 protein (2 μg/kg, i.v., once per week for three weeks) efficiently restored atherosclerosis in EC-specific Snail-deleted mice. Finally, we developed an orally bioavailable small-molecule Snail inhibitor LFW273 that displayed potent anti-atherosclerotic effects in mice. These results reveal Snail as a promising therapeutic target in atherosclerotic disease.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01519-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The intraplaque endothelium dysfunction and associated inflammation contribute to the progression of atherosclerosis. We previously show that zinc-finger transcription factor Snail is predominantly expressed in embryonic vascular endothelial cells (ECs), and deletion of Snail in ECs induces severe defects in vascular development and thus causes embryonic lethality. Snail is essentially absent at postnatal stage, and inducible deletion of Snail in ECs has no impact on physiological angiogenesis in postnatally developing or adult mice. In this study we investigated whether Snail was reactivated in vascular ECs during pathologically angiogenic process (e.g. the formation of atherosclerotic plaque) or could play a functional role in atherosclerosis progression. We showed that the expression levels of Snail were significantly elevated in ECs of human and mouse atherosclerotic plaques, and associated with the disease severity. In the accelerated and canonical mouse models of atherosclerosis, tamoxifen-inducible, EC-specific Snail deletion significantly reduced intraplaque endothelial dysfunction, inflammation and lipid uptake accompanied by enhanced plaque stability. By conducting scRNA-sequencing in ECs of ApoE-/-SnailiΔEC versus ApoE-/-Snailfl/fl arterial vessels, we demonstrated that Snail deletion significantly decreased histone acetylation on Ccl5 and Cxcl10 promoters, thereby decreased CCL5/CXCL10-driven vascular damage and inflammation. Administration with recombinant CXCL10 protein (2 μg/kg, i.v., once per week for three weeks) efficiently restored atherosclerosis in EC-specific Snail-deleted mice. Finally, we developed an orally bioavailable small-molecule Snail inhibitor LFW273 that displayed potent anti-atherosclerotic effects in mice. These results reveal Snail as a promising therapeutic target in atherosclerotic disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信