Geoffrey Woollard, Wenda Zhou, Erik H Thiede, Chen Lin, Nikolaus Grigorieff, Pilar Cossio, Khanh Dao Duc, Sonya M Hanson
{"title":"InstaMap: instant-NGP for cryo-EM density maps.","authors":"Geoffrey Woollard, Wenda Zhou, Erik H Thiede, Chen Lin, Nikolaus Grigorieff, Pilar Cossio, Khanh Dao Duc, Sonya M Hanson","doi":"10.1107/S2059798325002025","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the parallels between problems in computer vision and cryo-electron microscopy (cryo-EM), many state-of-the-art approaches from computer vision have yet to be adapted for cryo-EM. Within the computer-vision research community, implicits such as neural radiance fields (NeRFs) have enabled the detailed reconstruction of 3D objects from few images at different camera-viewing angles. While other neural implicits, specifically density fields, have been used to map conformational heterogeneity from noisy cryo-EM projection images, most approaches represent volume with an implicit function in Fourier space, which has disadvantages compared with solving the problem in real space, complicating, for instance, masking, constraining physics or geometry, and assessing local resolution. In this work, we build on a recent development in neural implicits, a multi-resolution hash-encoding framework called instant-NGP, that we use to represent the scalar volume directly in real space and apply it to the cryo-EM density-map reconstruction problem (InstaMap). We demonstrate that for both synthetic and real data, InstaMap for homogeneous reconstruction achieves higher resolution at shorter training stages than five other real-spaced representations. We propose a solution to noise overfitting, demonstrate that InstaMap is both lightweight and fast to train, implement masking from a user-provided input mask and extend it to molecular-shape heterogeneity via bending space using a per-image vector field.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"147-169"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966239/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798325002025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the parallels between problems in computer vision and cryo-electron microscopy (cryo-EM), many state-of-the-art approaches from computer vision have yet to be adapted for cryo-EM. Within the computer-vision research community, implicits such as neural radiance fields (NeRFs) have enabled the detailed reconstruction of 3D objects from few images at different camera-viewing angles. While other neural implicits, specifically density fields, have been used to map conformational heterogeneity from noisy cryo-EM projection images, most approaches represent volume with an implicit function in Fourier space, which has disadvantages compared with solving the problem in real space, complicating, for instance, masking, constraining physics or geometry, and assessing local resolution. In this work, we build on a recent development in neural implicits, a multi-resolution hash-encoding framework called instant-NGP, that we use to represent the scalar volume directly in real space and apply it to the cryo-EM density-map reconstruction problem (InstaMap). We demonstrate that for both synthetic and real data, InstaMap for homogeneous reconstruction achieves higher resolution at shorter training stages than five other real-spaced representations. We propose a solution to noise overfitting, demonstrate that InstaMap is both lightweight and fast to train, implement masking from a user-provided input mask and extend it to molecular-shape heterogeneity via bending space using a per-image vector field.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.