{"title":"Molecular-Level Understanding of Water Transport Mechanisms in Functionalized Ti<sub>3</sub>C<sub>2</sub>T<i><sub>X</sub></i> MXene Membrane-Combined Experimental Approaches.","authors":"Yang He, Guowei Chen, Yiping Zhao, Li Chen","doi":"10.1021/acs.jpcb.4c08655","DOIUrl":null,"url":null,"abstract":"<p><p>The hydrophilicity of two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides (MXene) nanochannels plays a critical role in water transport during filtration, yet its specific effects on MXene membranes remain inadequately understood. Herein, we systematically investigated water transport through Ti<sub>3</sub>C<sub>2</sub>T<i><sub>X</sub></i> MXene nanochannels using molecular dynamics simulations coupled with experimental validation, addressing a significant knowledge gap in MXene-based separation membranes. Our simulations demonstrated that strong interactions between water molecules and hydrophilic nanochannel MXene surfaces (Ti<sub>3</sub>C<sub>2</sub>(OH)<sub>2</sub> MXene or Ti<sub>3</sub>C<sub>2</sub>(NH)<sub>2</sub> MXene) facilitated the formation of ordered molecular arrangements, substantially improving water permeability. Conversely, hydrophobic nanochannels (Ti<sub>3</sub>C<sub>2</sub>O<sub>2</sub> MXene or Ti<sub>3</sub>C<sub>2</sub>F<sub>2</sub> MXene) exhibited disordered water molecule distributions, leading to reduced permeability. Experimental validation corroborated these simulation results, demonstrating a direct correlation between the hydrophilicity of the Ti<sub>3</sub>C<sub>2</sub>T<i><sub>X</sub></i> surface and the water flux. The highly hydrophilic Ti<sub>3</sub>C<sub>2</sub>(OH)<sub>2</sub> MXenes exhibited water flux maximum, whereas the more hydrophobic Ti<sub>3</sub>C<sub>2</sub>F<sub>2</sub> MXenes had the lowest water flux. By integrating molecular dynamics simulations with experimental analyses, we gained comprehensive insights into the influence of nanochannel hydrophilicity on water transport mechanisms in MXene membranes. These findings provide critical guidelines for designing high-performance MXene-based membranes for advanced water treatment and separation applications.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"3396-3407"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08655","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrophilicity of two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides (MXene) nanochannels plays a critical role in water transport during filtration, yet its specific effects on MXene membranes remain inadequately understood. Herein, we systematically investigated water transport through Ti3C2TX MXene nanochannels using molecular dynamics simulations coupled with experimental validation, addressing a significant knowledge gap in MXene-based separation membranes. Our simulations demonstrated that strong interactions between water molecules and hydrophilic nanochannel MXene surfaces (Ti3C2(OH)2 MXene or Ti3C2(NH)2 MXene) facilitated the formation of ordered molecular arrangements, substantially improving water permeability. Conversely, hydrophobic nanochannels (Ti3C2O2 MXene or Ti3C2F2 MXene) exhibited disordered water molecule distributions, leading to reduced permeability. Experimental validation corroborated these simulation results, demonstrating a direct correlation between the hydrophilicity of the Ti3C2TX surface and the water flux. The highly hydrophilic Ti3C2(OH)2 MXenes exhibited water flux maximum, whereas the more hydrophobic Ti3C2F2 MXenes had the lowest water flux. By integrating molecular dynamics simulations with experimental analyses, we gained comprehensive insights into the influence of nanochannel hydrophilicity on water transport mechanisms in MXene membranes. These findings provide critical guidelines for designing high-performance MXene-based membranes for advanced water treatment and separation applications.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.