Mingyue Li, Ryan Schroder, Umut Ozuguzel, Tyler M Corts, Yong Liu, Yuejie Zhao, Wei Xu, Jing Ling, Allen C Templeton, Bodhisattwa Chaudhuri, Marian Gindy, Angela Wagner, Yongchao Su
{"title":"Molecular Insight into Lipid Nanoparticle Assembly from NMR Spectroscopy and Molecular Dynamics Simulation.","authors":"Mingyue Li, Ryan Schroder, Umut Ozuguzel, Tyler M Corts, Yong Liu, Yuejie Zhao, Wei Xu, Jing Ling, Allen C Templeton, Bodhisattwa Chaudhuri, Marian Gindy, Angela Wagner, Yongchao Su","doi":"10.1021/acs.molpharmaceut.4c01437","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) have emerged as the premier drug delivery system for oligonucleotide vaccines and therapeutics in recent years. Despite their prosperous advancement in research and clinical applications, there is a significant lack of mechanistic understanding of the assembly of lipid particles at the molecular level. In our study, we utilized a combination of solution and solid-state NMR, together with molecular dynamics simulations, to elucidate local structures and interactions of chemical components across multiple motional regimes. Our results comprehensively evaluated the impact of formulation components and engineering process factors on the particle formation and identified the interplay of phospholipids (DSPC), poly(ethylene glycol) (PEG) lipid conjugates, and cholesterol in governing the particle size and lipid dynamics from a structural perspective, using static <sup>31</sup>P NMR techniques. These studies provide novel insights into the impact of particle engineering on the molecular properties of the LNP envelope membrane. Additionally, molecular interactions and compositional distribution play a critical role in particle engineering and the consequent stability and potency. In this study, we have identified intermolecular contacts among the lipid components using one-dimensional <sup>1</sup>H-<sup>13</sup>C cross-polarization magic angle spinning experiments, <sup>1</sup>H relaxation measurements, and two-dimensional <sup>1</sup>H-<sup>1</sup>H correlation methods, providing a structural basis for the lipid assembly. Interestingly, the cationic and ionizable lipids, conventionally regarded as stabilizing agents primarily located within the core of LNPs, were found to interact with PEG lipids and coexist in the outer layer of the particles. We suggest that LNPs examined here are comprised of an outer layer rich in lipid components surrounding a core region. Our high-resolution findings offer insightful structural and dynamic details pertaining to the individual chemical components in the lipid particles and their interactions influence lipid complex structure and stability in particle engineering.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"2193-2212"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01437","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid nanoparticles (LNPs) have emerged as the premier drug delivery system for oligonucleotide vaccines and therapeutics in recent years. Despite their prosperous advancement in research and clinical applications, there is a significant lack of mechanistic understanding of the assembly of lipid particles at the molecular level. In our study, we utilized a combination of solution and solid-state NMR, together with molecular dynamics simulations, to elucidate local structures and interactions of chemical components across multiple motional regimes. Our results comprehensively evaluated the impact of formulation components and engineering process factors on the particle formation and identified the interplay of phospholipids (DSPC), poly(ethylene glycol) (PEG) lipid conjugates, and cholesterol in governing the particle size and lipid dynamics from a structural perspective, using static 31P NMR techniques. These studies provide novel insights into the impact of particle engineering on the molecular properties of the LNP envelope membrane. Additionally, molecular interactions and compositional distribution play a critical role in particle engineering and the consequent stability and potency. In this study, we have identified intermolecular contacts among the lipid components using one-dimensional 1H-13C cross-polarization magic angle spinning experiments, 1H relaxation measurements, and two-dimensional 1H-1H correlation methods, providing a structural basis for the lipid assembly. Interestingly, the cationic and ionizable lipids, conventionally regarded as stabilizing agents primarily located within the core of LNPs, were found to interact with PEG lipids and coexist in the outer layer of the particles. We suggest that LNPs examined here are comprised of an outer layer rich in lipid components surrounding a core region. Our high-resolution findings offer insightful structural and dynamic details pertaining to the individual chemical components in the lipid particles and their interactions influence lipid complex structure and stability in particle engineering.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.