Guihong Lu, Shanming Lu, Haibing Dai, Fan Zhang, Xiaotian Wang, Weiqun Li, Lin Mei, Hui Tan
{"title":"Engineered Turmeric-Derived Nanovesicles for Ulcerative Colitis Therapy by Attenuating Oxidative Stress and Alleviating Inflammation.","authors":"Guihong Lu, Shanming Lu, Haibing Dai, Fan Zhang, Xiaotian Wang, Weiqun Li, Lin Mei, Hui Tan","doi":"10.1021/acs.molpharmaceut.4c01328","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation and oxidative stress are important features of traumatic ulcerative colitis (UC). Turmeric has been used as a dietary and functional ingredient for its potent anti-inflammatory effects in UC therapy. However, its practical effectiveness is hindered by limited reactive oxygen species (ROS) elimination properties. To address this, we constructed a unique treatment agent by growing cerium oxide (CeO<sub>2</sub>) nanocrystals on the membranes of turmeric-derived nanovesicles (TNVs), named as TNV-Ce. The resulted TNV-Ce could suppress inflammation and exhibit exceptional ROS-scavenging activity, which was validated both in lipopolysaccharide-induced macrophages and dextran sulfate sodium salt-induced chronic colitis mouse model. Following oral administration, TNV-Ce significantly accumulated at inflamed sites, effectively eliminating ROS and inhibiting pro-inflammatory cytokines for synergistic action against UC.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"2159-2167"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01328","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammation and oxidative stress are important features of traumatic ulcerative colitis (UC). Turmeric has been used as a dietary and functional ingredient for its potent anti-inflammatory effects in UC therapy. However, its practical effectiveness is hindered by limited reactive oxygen species (ROS) elimination properties. To address this, we constructed a unique treatment agent by growing cerium oxide (CeO2) nanocrystals on the membranes of turmeric-derived nanovesicles (TNVs), named as TNV-Ce. The resulted TNV-Ce could suppress inflammation and exhibit exceptional ROS-scavenging activity, which was validated both in lipopolysaccharide-induced macrophages and dextran sulfate sodium salt-induced chronic colitis mouse model. Following oral administration, TNV-Ce significantly accumulated at inflamed sites, effectively eliminating ROS and inhibiting pro-inflammatory cytokines for synergistic action against UC.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.