{"title":"Relative Binding Free Energy Estimation of Congeneric Ligands and Macromolecular Mutants with the Alchemical Transfer Method with Coordinate Swapping.","authors":"Emilio Gallicchio","doi":"10.1021/acs.jcim.5c00207","DOIUrl":null,"url":null,"abstract":"<p><p>We present the Alchemical Transfer with Coordinate Swapping (ATS) method to enable the calculation of the relative binding free energies between large congeneric ligands and single-point mutant peptides to protein receptors with the Alchemical Transfer Method (ATM) framework. Similarly to ATM, the new method implements the alchemical transformation as a coordinate transformation and works with any unmodified force fields and standard chemical topologies. Unlike ATM, which transfers whole ligands in and out of the receptor binding site, ATS limits the magnitude of the alchemical perturbation by transferring only the portion of the molecules that differ between the bound and unbound ligands. The common region of the two ligands, which can be arbitrarily large, is unchanged and does not contribute to the magnitude and statistical fluctuations of the perturbation energy. Internally, the coordinates of the atoms of the common regions are swapped to maintain the integrity of the covalent bonding data structures of the OpenMM molecular dynamics engine. The work successfully validates the method on protein-ligand and protein-peptide RBFE benchmarks. This advance paves the road for the application of the relative binding free energy Alchemical Transfer Method protocol to study the effect of protein and nucleic acid mutations on the binding affinity and specificity of macromolecular complexes.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00207","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present the Alchemical Transfer with Coordinate Swapping (ATS) method to enable the calculation of the relative binding free energies between large congeneric ligands and single-point mutant peptides to protein receptors with the Alchemical Transfer Method (ATM) framework. Similarly to ATM, the new method implements the alchemical transformation as a coordinate transformation and works with any unmodified force fields and standard chemical topologies. Unlike ATM, which transfers whole ligands in and out of the receptor binding site, ATS limits the magnitude of the alchemical perturbation by transferring only the portion of the molecules that differ between the bound and unbound ligands. The common region of the two ligands, which can be arbitrarily large, is unchanged and does not contribute to the magnitude and statistical fluctuations of the perturbation energy. Internally, the coordinates of the atoms of the common regions are swapped to maintain the integrity of the covalent bonding data structures of the OpenMM molecular dynamics engine. The work successfully validates the method on protein-ligand and protein-peptide RBFE benchmarks. This advance paves the road for the application of the relative binding free energy Alchemical Transfer Method protocol to study the effect of protein and nucleic acid mutations on the binding affinity and specificity of macromolecular complexes.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.