{"title":"Robust UPLC–MS/MS Method With Acetonitrile for Precise Intracellular Quantification of Tacrolimus in PBMCs: A Step Toward Clinical Integration","authors":"Napatsanan Tanathitiphuwarat, Asada Leelahavanichkul, Pajaree Chariyavilaskul, Suwasin Udomkarnjananun","doi":"10.1111/cts.70210","DOIUrl":null,"url":null,"abstract":"<p>Monitoring whole blood tacrolimus concentrations is standard in clinical practice; however, it may not fully reflect its therapeutic effects, as tacrolimus primarily acts within lymphocytes. While various intracellular quantification methods have been developed, many involve complex procedures such as evaporation, reconstitution, or specialized tools (e.g., magnetic beads, online solid-phase extraction), limiting their accessibility. This study aimed to develop and validate a streamlined, sensitive method for measuring intracellular tacrolimus concentrations using 5×10<sup>5</sup> peripheral blood mononuclear cells (PBMCs). Tacrolimus concentrations were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PBMCs were aliquoted into 50 μL volumes containing 5×10<sup>5</sup> cells and prepared via acetonitrile-based protein precipitation. Chromatographic separation was performed using a Luna C18 column with a gradient mobile phase consisting of water with 20 mM ammonium acetate, 0.1% formic acid, and methanol at a flow rate of 0.4 mL/min. The method demonstrated excellent linearity between 0.1 and 25 ng/mL, corresponding to intracellular concentrations of 1–250 pg/5×10<sup>5</sup> cells (<i>r</i><sup>2</sup> = 0.999). Intra- and interday accuracy ranged from 98.1% to 109.8%, with precision between 2.08% and 8.70% across validation runs. Extraction recovery was high (93.0%–97.2%), with minimal matrix effects (100.9% at low QC and 111.6% at high QC). This validated LC-MS/MS method provides a rapid, reliable, and sensitive approach for pharmacokinetic studies and clinical applications, facilitating intracellular tacrolimus monitoring in transplant patients.</p>","PeriodicalId":50610,"journal":{"name":"Cts-Clinical and Translational Science","volume":"18 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cts.70210","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cts-Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cts.70210","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring whole blood tacrolimus concentrations is standard in clinical practice; however, it may not fully reflect its therapeutic effects, as tacrolimus primarily acts within lymphocytes. While various intracellular quantification methods have been developed, many involve complex procedures such as evaporation, reconstitution, or specialized tools (e.g., magnetic beads, online solid-phase extraction), limiting their accessibility. This study aimed to develop and validate a streamlined, sensitive method for measuring intracellular tacrolimus concentrations using 5×105 peripheral blood mononuclear cells (PBMCs). Tacrolimus concentrations were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PBMCs were aliquoted into 50 μL volumes containing 5×105 cells and prepared via acetonitrile-based protein precipitation. Chromatographic separation was performed using a Luna C18 column with a gradient mobile phase consisting of water with 20 mM ammonium acetate, 0.1% formic acid, and methanol at a flow rate of 0.4 mL/min. The method demonstrated excellent linearity between 0.1 and 25 ng/mL, corresponding to intracellular concentrations of 1–250 pg/5×105 cells (r2 = 0.999). Intra- and interday accuracy ranged from 98.1% to 109.8%, with precision between 2.08% and 8.70% across validation runs. Extraction recovery was high (93.0%–97.2%), with minimal matrix effects (100.9% at low QC and 111.6% at high QC). This validated LC-MS/MS method provides a rapid, reliable, and sensitive approach for pharmacokinetic studies and clinical applications, facilitating intracellular tacrolimus monitoring in transplant patients.
期刊介绍:
Clinical and Translational Science (CTS), an official journal of the American Society for Clinical Pharmacology and Therapeutics, highlights original translational medicine research that helps bridge laboratory discoveries with the diagnosis and treatment of human disease. Translational medicine is a multi-faceted discipline with a focus on translational therapeutics. In a broad sense, translational medicine bridges across the discovery, development, regulation, and utilization spectrum. Research may appear as Full Articles, Brief Reports, Commentaries, Phase Forwards (clinical trials), Reviews, or Tutorials. CTS also includes invited didactic content that covers the connections between clinical pharmacology and translational medicine. Best-in-class methodologies and best practices are also welcomed as Tutorials. These additional features provide context for research articles and facilitate understanding for a wide array of individuals interested in clinical and translational science. CTS welcomes high quality, scientifically sound, original manuscripts focused on clinical pharmacology and translational science, including animal, in vitro, in silico, and clinical studies supporting the breadth of drug discovery, development, regulation and clinical use of both traditional drugs and innovative modalities.