Move to See More: Approaching Object With Partial Occlusion Using Large Multimodal Model and Active Object Detection

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Aoqi Wang, Guohui Tian, Yuhao Wang, Zhongyang Li
{"title":"Move to See More: Approaching Object With Partial Occlusion Using Large Multimodal Model and Active Object Detection","authors":"Aoqi Wang,&nbsp;Guohui Tian,&nbsp;Yuhao Wang,&nbsp;Zhongyang Li","doi":"10.1049/csy2.70008","DOIUrl":null,"url":null,"abstract":"<p>Active object detection (AOD) is a crucial task in the field of robotics. A key challenge in household environments for AOD is that the target object is often undetectable due to partial occlusion, which leads to the failure of traditional methods. To address the occlusion problem, this paper first proposes a novel occlusion handling method based on the large multimodal model (LMM). The method utilises an LMM to detect and analyse input RGB images and generates adjustment actions to progressively eliminate occlusion. After the occlusion is handled, an improved AOD method based on a deep Q-learning network (DQN) is used to complete the task. We introduce an attention mechanism to process image features, enabling the model to focus on critical regions of the input images. Additionally, a new reward function is proposed that comprehensively considers the bounding box of the target object and the robot's distance to the object, along with the actions performed by the robot. Experiments on the dataset and in real-world scenarios validate the effectiveness of the proposed method in performing AOD tasks under partial occlusion.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"7 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.70008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Active object detection (AOD) is a crucial task in the field of robotics. A key challenge in household environments for AOD is that the target object is often undetectable due to partial occlusion, which leads to the failure of traditional methods. To address the occlusion problem, this paper first proposes a novel occlusion handling method based on the large multimodal model (LMM). The method utilises an LMM to detect and analyse input RGB images and generates adjustment actions to progressively eliminate occlusion. After the occlusion is handled, an improved AOD method based on a deep Q-learning network (DQN) is used to complete the task. We introduce an attention mechanism to process image features, enabling the model to focus on critical regions of the input images. Additionally, a new reward function is proposed that comprehensively considers the bounding box of the target object and the robot's distance to the object, along with the actions performed by the robot. Experiments on the dataset and in real-world scenarios validate the effectiveness of the proposed method in performing AOD tasks under partial occlusion.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信