Streaming Long-Read Sequence Alignments for HLA Predictions Using HLAminer

René L. Warren, Inanc Birol
{"title":"Streaming Long-Read Sequence Alignments for HLA Predictions Using HLAminer","authors":"René L. Warren,&nbsp;Inanc Birol","doi":"10.1002/cpz1.70124","DOIUrl":null,"url":null,"abstract":"<p>Long-read sequencing platforms such as the Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) platforms now offer sufficient read lengths, throughput, and accuracy at competitive costs to analyze polymorphic regions of the human genome, including the highly complex human leukocyte antigen (HLA) gene cluster—a cornerstone of human immunity. Here, we present a streamlined protocol for predicting HLA signatures from whole-genome shotgun (WGS) long-read sequencing data by directly streaming sequence alignments into HLAminer. This method is as simple as running minimap2, scales efficiently with the number of sequences, and works with any read aligner compatible with the SAM file format—eliminating the need to store bulky alignment files on disk. We provide a step-by-step guide for predicting HLA class I and class II alleles from third-generation long-read sequencing data and demonstrate the robustness of predictions even with older, less accurate WGS nanopore datasets and relatively low (10×) sequencing coverage. Code availability: HLAminer is available under the BC Cancer software license agreement (academic use) at https://github.com/bcgsc/HLAminer. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC.</p><p><b>Basic Protocol</b>: HLA prediction from streamed ONT or PacBio long-read alignments</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"5 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpz1.70124","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Long-read sequencing platforms such as the Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) platforms now offer sufficient read lengths, throughput, and accuracy at competitive costs to analyze polymorphic regions of the human genome, including the highly complex human leukocyte antigen (HLA) gene cluster—a cornerstone of human immunity. Here, we present a streamlined protocol for predicting HLA signatures from whole-genome shotgun (WGS) long-read sequencing data by directly streaming sequence alignments into HLAminer. This method is as simple as running minimap2, scales efficiently with the number of sequences, and works with any read aligner compatible with the SAM file format—eliminating the need to store bulky alignment files on disk. We provide a step-by-step guide for predicting HLA class I and class II alleles from third-generation long-read sequencing data and demonstrate the robustness of predictions even with older, less accurate WGS nanopore datasets and relatively low (10×) sequencing coverage. Code availability: HLAminer is available under the BC Cancer software license agreement (academic use) at https://github.com/bcgsc/HLAminer. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC.

Basic Protocol: HLA prediction from streamed ONT or PacBio long-read alignments

流式长读序列比对HLA预测使用HLAminer
长读测序平台,如牛津纳米孔技术公司(ONT)和太平洋生物科学公司(PacBio)的平台,现在以具有竞争力的成本提供足够的读取长度、吞吐量和准确性来分析人类基因组的多态性区域,包括高度复杂的人类白细胞抗原(HLA)基因簇——人类免疫的基石。在这里,我们提出了一种简化的方案,通过直接将序列比对流式传输到HLAminer中,从全基因组霰弹枪(WGS)长读测序数据中预测HLA特征。该方法与运行minimap2一样简单,可以根据序列的数量进行有效缩放,并且可以与任何与SAM文件格式兼容的读对齐器一起工作,从而消除了在磁盘上存储大量对齐文件的需要。我们提供了从第三代长读测序数据中预测HLA I类和II类等位基因的一步一步指南,并证明了即使使用较旧的、较不准确的WGS纳米孔数据集和相对较低的(10倍)测序覆盖率,预测的稳稳性。代码可用性:HLAminer在BC癌症软件许可协议(学术使用)下可在https://github.com/bcgsc/HLAminer获得。©2025作者。当前协议由Wiley期刊有限公司发布。基本协议:从流式ONT或PacBio长读比对预测HLA
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信