{"title":"Dynamic Response Analysis and Active Vibration Control of the Smart Sandwich Composite Plate With FGM Core Layers and MIMO FGPM Actuators and Sensors","authors":"Kerim Gökhan Aktaş, İsmail Esen","doi":"10.1002/msd2.70001","DOIUrl":null,"url":null,"abstract":"<p>This article deals with the dynamic response analysis and active vibration control of the smart functionally graded material (FGM) composite core plate with FG piezoelectric material (FGPM) surface actuators and sensors. Considering a power law distribution, the mechanical and electrical material characteristics of the FGM and FGPM layers change continually along the thickness plane. The finite element method (FEM) and the first-order shear deformation theory (FSDT) are utilized in the modeling process for the FGM and FGPM layers. In the dynamic analysis, the dynamic response of the sandwich structure under the impact of sinusoidally distributed step load and the corresponding sensor voltage is obtained. To ensure that the simulations are accurate, the findings are compared with previously published research. To analyze the control efficiency of FGPM sensors and actuators on the FGM host structure, the linear quadratic regulator (LQR) controller is utilized. The sandwich structure is considered a multiple-input multiple-output system (MIMO), so sensors and actuators are placed at different locations on the plate surface. The modal strain energy method is utilized to find the appropriate location of the FGPM layers. According to the results of the analysis, it has been determined that piezoelectric material coefficients as well as mechanical properties are extremely important for obtaining optimum control performance from FGPM sensors and actuators. In addition, it is emphasized that active vibration control of FGM plates can be performed effectively with the proper selection of sensors and actuators and their accurate distribution on the plate. These results are expected to contribute to micro-electro-mechanical system (MEMS) sensor and actuator applications, soft robotics applications, and vibration protection and vibration damping applications of nanostructures.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 1","pages":"3-19"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article deals with the dynamic response analysis and active vibration control of the smart functionally graded material (FGM) composite core plate with FG piezoelectric material (FGPM) surface actuators and sensors. Considering a power law distribution, the mechanical and electrical material characteristics of the FGM and FGPM layers change continually along the thickness plane. The finite element method (FEM) and the first-order shear deformation theory (FSDT) are utilized in the modeling process for the FGM and FGPM layers. In the dynamic analysis, the dynamic response of the sandwich structure under the impact of sinusoidally distributed step load and the corresponding sensor voltage is obtained. To ensure that the simulations are accurate, the findings are compared with previously published research. To analyze the control efficiency of FGPM sensors and actuators on the FGM host structure, the linear quadratic regulator (LQR) controller is utilized. The sandwich structure is considered a multiple-input multiple-output system (MIMO), so sensors and actuators are placed at different locations on the plate surface. The modal strain energy method is utilized to find the appropriate location of the FGPM layers. According to the results of the analysis, it has been determined that piezoelectric material coefficients as well as mechanical properties are extremely important for obtaining optimum control performance from FGPM sensors and actuators. In addition, it is emphasized that active vibration control of FGM plates can be performed effectively with the proper selection of sensors and actuators and their accurate distribution on the plate. These results are expected to contribute to micro-electro-mechanical system (MEMS) sensor and actuator applications, soft robotics applications, and vibration protection and vibration damping applications of nanostructures.