Juan Li, Chuan Mou, Yawei Yuan, Long Wang, Caihong Wu
{"title":"Sevoflurane Mediates LINC00339/miR-671-5p/PSMB2 Axis to Improve Cardiomyocytes Against Hypoxia/Reoxygenation Injury","authors":"Juan Li, Chuan Mou, Yawei Yuan, Long Wang, Caihong Wu","doi":"10.1002/jbt.70234","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Ischemia/reperfusion (I/R) causes a deterioration in heart function, leading to myocardial infarction. It is aimed at investigating the protective mechanism of sevoflurane (Sevo) on cardiomyocytes by constructing a cellular model of hypoxic/reoxygenation (H/R) in this study.[Human hybrid] epithelioid cells (AC16) were induced by H/R to establish a model of myocardial I/R injury and Sevo postconditioning. The expression of long intergenic non-protein coding RNA 339 (LINC00339), microRNA-671-5p (miR-671-5p) and proteasome 20S subunit beta 2 (PSMB2) was detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Viability and apoptosis of AC16 cells were detected by cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. The levels of interleukin-6 (IL-6), IL-10, tumor necrosis factor-a (TNF-a), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), were detected. LINC00339 expression was upregulated in H/R cardiomyocytes relative to the Control group, whereas Sevo decreased LINC00339 expression in H/R cardiomyocytes. The viability of AC16 cells were increased, and apoptosis, oxidative stress, and inflammatory responses decreased in the Sevo postconditioning group relative to the H/R group, but the protective effect of Sevo on H/R cardiomyocytes was partially reversed by LINC00339 overexpression. LINC00339 negatively regulated miR-671-5p, and miR-671-5p upregulation could alleviate the damage of LINC00339 on H/R cardiomyocytes. PSMB2, a downstream target gene of miR-671-5p, could inhibit the protective effect of Sevo on H/R cardiomyocytes. Sevo postconditioning exerts a protective effect in H/R-induced cardiomyocyte injury, which may be achieved by interfering with LINC00339/miR-671-5p/PSMB2 expression.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70234","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemia/reperfusion (I/R) causes a deterioration in heart function, leading to myocardial infarction. It is aimed at investigating the protective mechanism of sevoflurane (Sevo) on cardiomyocytes by constructing a cellular model of hypoxic/reoxygenation (H/R) in this study.[Human hybrid] epithelioid cells (AC16) were induced by H/R to establish a model of myocardial I/R injury and Sevo postconditioning. The expression of long intergenic non-protein coding RNA 339 (LINC00339), microRNA-671-5p (miR-671-5p) and proteasome 20S subunit beta 2 (PSMB2) was detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Viability and apoptosis of AC16 cells were detected by cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. The levels of interleukin-6 (IL-6), IL-10, tumor necrosis factor-a (TNF-a), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), were detected. LINC00339 expression was upregulated in H/R cardiomyocytes relative to the Control group, whereas Sevo decreased LINC00339 expression in H/R cardiomyocytes. The viability of AC16 cells were increased, and apoptosis, oxidative stress, and inflammatory responses decreased in the Sevo postconditioning group relative to the H/R group, but the protective effect of Sevo on H/R cardiomyocytes was partially reversed by LINC00339 overexpression. LINC00339 negatively regulated miR-671-5p, and miR-671-5p upregulation could alleviate the damage of LINC00339 on H/R cardiomyocytes. PSMB2, a downstream target gene of miR-671-5p, could inhibit the protective effect of Sevo on H/R cardiomyocytes. Sevo postconditioning exerts a protective effect in H/R-induced cardiomyocyte injury, which may be achieved by interfering with LINC00339/miR-671-5p/PSMB2 expression.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.