Hygrothermal Static Bending and Deflection Responses of Porous Multidirectional Nanofunctionally Graded Piezoelectric (NFGP) Plates With Variable Thickness on Elastic Foundations

IF 3.4 Q1 ENGINEERING, MECHANICAL
Pawan Kumar, Suraj Prakash Harsha
{"title":"Hygrothermal Static Bending and Deflection Responses of Porous Multidirectional Nanofunctionally Graded Piezoelectric (NFGP) Plates With Variable Thickness on Elastic Foundations","authors":"Pawan Kumar,&nbsp;Suraj Prakash Harsha","doi":"10.1002/msd2.70003","DOIUrl":null,"url":null,"abstract":"<p>This research article introduces a high-order finite element model based on the first-order shear deformation theory to analyze the hygrothermal static responses of nanoscale, multidirectional nanofunctionally graded piezoelectric (NFGP) plates resting on variable elastic foundations. The study considers the material properties of these plates, which are governed by three distinct material laws—Power, Exponential, and Sigmoid as well as various patterns of porosity distribution. The derived governing equations are formulated using Hamilton's principle and incorporate nonlocal piezoelasticity theory, employing a nine-node isoperimetric quadrilateral Lagrangian element capable of handling six degrees of freedom. A comprehensive parametric study is conducted, examining the influence of the small-scale parameter, material exponent for multidirectional grading, variable foundation stiffness, porosity-related exponent, thickness ratio, and the effects of hygrothermal and electrical loading on the NFGP plates, all while considering different boundary conditions. The findings provide valuable insights into the interaction between multidirectional graded smart structures and their foundations under varying hygrothermal and electromechanical conditions, which can significantly enhance the efficiency of designing and developing intelligent structures and systems.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 1","pages":"40-66"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research article introduces a high-order finite element model based on the first-order shear deformation theory to analyze the hygrothermal static responses of nanoscale, multidirectional nanofunctionally graded piezoelectric (NFGP) plates resting on variable elastic foundations. The study considers the material properties of these plates, which are governed by three distinct material laws—Power, Exponential, and Sigmoid as well as various patterns of porosity distribution. The derived governing equations are formulated using Hamilton's principle and incorporate nonlocal piezoelasticity theory, employing a nine-node isoperimetric quadrilateral Lagrangian element capable of handling six degrees of freedom. A comprehensive parametric study is conducted, examining the influence of the small-scale parameter, material exponent for multidirectional grading, variable foundation stiffness, porosity-related exponent, thickness ratio, and the effects of hygrothermal and electrical loading on the NFGP plates, all while considering different boundary conditions. The findings provide valuable insights into the interaction between multidirectional graded smart structures and their foundations under varying hygrothermal and electromechanical conditions, which can significantly enhance the efficiency of designing and developing intelligent structures and systems.

Abstract Image

弹性地基上多孔多向纳米功能梯度压电(NFGP)板的湿热静态弯曲和挠曲响应
本文引入基于一阶剪切变形理论的高阶有限元模型,分析了变弹性地基上纳米尺度、多向纳米功能梯度压电板的热静态响应。该研究考虑了这些板的材料特性,这些特性受三种不同的材料定律——幂次定律、指数定律和s型定律以及各种孔隙率分布模式的支配。导出的控制方程采用汉密尔顿原理并结合非局部压电弹性理论,采用能够处理六个自由度的九节点等距四边形拉格朗日单元。在考虑不同边界条件的情况下,进行了全面的参数化研究,考察了小尺度参数、多向级配材料指数、变基础刚度、孔隙率相关指数、厚度比以及湿热和电荷载对NFGP板的影响。研究结果对多向梯度智能结构及其基础在不同湿热和机电条件下的相互作用提供了有价值的见解,可以显著提高智能结构和系统的设计和开发效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信