Crafting Transferable Adversarial Examples Against 3D Object Detection

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haiyan Long, Hai Chen, Mengyao Xu, Chonghao Zhang, Fulan Qian
{"title":"Crafting Transferable Adversarial Examples Against 3D Object Detection","authors":"Haiyan Long,&nbsp;Hai Chen,&nbsp;Mengyao Xu,&nbsp;Chonghao Zhang,&nbsp;Fulan Qian","doi":"10.1049/cvi2.70011","DOIUrl":null,"url":null,"abstract":"<p>3D object detection is one of the current popular hotspots by perceiving the surrounding environment through LiDAR and camera sensors to recognise the category and location of objects in the scene. Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples. Although some approaches have begun to investigate the robustness of 3D object detection models, they are currently generating adversarial examples in a white-box setting and there is a lack of research into generating transferable adversarial examples in a black-box setting. In this paper, a non-end-to-end attack algorithm was proposed for LiDAR pipelines that crafts transferable adversarial examples against 3D object detection. Specifically, the method generates adversarial examples by restraining features with high contribution to downstream tasks and amplifying features with low contribution to downstream tasks in the feature space. Extensive experiments validate that the method produces more transferable adversarial point clouds, for example, the method generates adversarial point clouds in the nuScenes dataset that are about 10<span></span><math>\n <semantics>\n <mrow>\n <mi>%</mi>\n </mrow>\n <annotation> $\\%$</annotation>\n </semantics></math> and 7<span></span><math>\n <semantics>\n <mrow>\n <mi>%</mi>\n </mrow>\n <annotation> $\\%$</annotation>\n </semantics></math> better than the state-of-the-art method on mAP and NDS, respectively.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70011","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

3D object detection is one of the current popular hotspots by perceiving the surrounding environment through LiDAR and camera sensors to recognise the category and location of objects in the scene. Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples. Although some approaches have begun to investigate the robustness of 3D object detection models, they are currently generating adversarial examples in a white-box setting and there is a lack of research into generating transferable adversarial examples in a black-box setting. In this paper, a non-end-to-end attack algorithm was proposed for LiDAR pipelines that crafts transferable adversarial examples against 3D object detection. Specifically, the method generates adversarial examples by restraining features with high contribution to downstream tasks and amplifying features with low contribution to downstream tasks in the feature space. Extensive experiments validate that the method produces more transferable adversarial point clouds, for example, the method generates adversarial point clouds in the nuScenes dataset that are about 10 % $\%$ and 7 % $\%$ better than the state-of-the-art method on mAP and NDS, respectively.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信