Temporal Optimisation of Satellite Image-Based Crop Mapping: A Comparison of Deep Time Series and Semi-Supervised Time Warping Strategies

IF 1.3 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rosie Finnegan, Joseph Metcalfe, Sara Sharifzadeh, Fabio Caraffini, Xianghua Xie, Alberto Hornero, Nicholas W. Synes
{"title":"Temporal Optimisation of Satellite Image-Based Crop Mapping: A Comparison of Deep Time Series and Semi-Supervised Time Warping Strategies","authors":"Rosie Finnegan,&nbsp;Joseph Metcalfe,&nbsp;Sara Sharifzadeh,&nbsp;Fabio Caraffini,&nbsp;Xianghua Xie,&nbsp;Alberto Hornero,&nbsp;Nicholas W. Synes","doi":"10.1049/cvi2.70014","DOIUrl":null,"url":null,"abstract":"<p>This study presents a novel approach to crop mapping using remotely sensed satellite images. It addresses the significant classification modelling challenges, including (1) the requirements for extensive labelled data and (2) the complex optimisation problem for selection of appropriate temporal windows in the absence of prior knowledge of cultivation calendars. We compare the lightweight Dynamic Time Warping (DTW) classification method with the heavily supervised Convolutional Neural Network - Long Short-Term Memory (CNN-LSTM) using high-resolution multispectral optical satellite imagery (3 m/pixel). Our approach integrates effective practical preprocessing steps, including data augmentation and a data-driven optimisation strategy for the temporal window, even in the presence of numerous crop classes. Our findings demonstrate that DTW, despite its lower data demands, can match the performance of CNN-LSTM through our effective preprocessing steps while significantly improving runtime. These results demonstrate that both CNN-LSTM and DTW can achieve deployment-level accuracy and underscore the potential of DTW as a viable alternative to more resource-intensive models. The results also prove the effectiveness of temporal windowing for improving runtime and accuracy of a crop classification study, even with no prior knowledge of planting timeframes.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cvi2.70014","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel approach to crop mapping using remotely sensed satellite images. It addresses the significant classification modelling challenges, including (1) the requirements for extensive labelled data and (2) the complex optimisation problem for selection of appropriate temporal windows in the absence of prior knowledge of cultivation calendars. We compare the lightweight Dynamic Time Warping (DTW) classification method with the heavily supervised Convolutional Neural Network - Long Short-Term Memory (CNN-LSTM) using high-resolution multispectral optical satellite imagery (3 m/pixel). Our approach integrates effective practical preprocessing steps, including data augmentation and a data-driven optimisation strategy for the temporal window, even in the presence of numerous crop classes. Our findings demonstrate that DTW, despite its lower data demands, can match the performance of CNN-LSTM through our effective preprocessing steps while significantly improving runtime. These results demonstrate that both CNN-LSTM and DTW can achieve deployment-level accuracy and underscore the potential of DTW as a viable alternative to more resource-intensive models. The results also prove the effectiveness of temporal windowing for improving runtime and accuracy of a crop classification study, even with no prior knowledge of planting timeframes.

Abstract Image

Abstract Image

Abstract Image

基于卫星图像作物制图的时间优化:深度时间序列与半监督时间翘曲策略的比较
本研究提出了一种利用遥感卫星图像进行作物制图的新方法。它解决了重大的分类建模挑战,包括(1)对大量标记数据的要求和(2)在缺乏种植日历先验知识的情况下选择适当时间窗口的复杂优化问题。我们将轻量级动态时间扭曲(DTW)分类方法与使用高分辨率多光谱光学卫星图像(3米/像素)的重监督卷积神经网络-长短期记忆(CNN-LSTM)进行比较。我们的方法集成了有效的实际预处理步骤,包括数据增强和数据驱动的时间窗口优化策略,即使在存在许多作物类的情况下也是如此。我们的研究结果表明,尽管DTW的数据需求较低,但通过我们有效的预处理步骤,DTW的性能可以与CNN-LSTM相匹配,同时显著提高了运行时间。这些结果表明,CNN-LSTM和DTW都可以达到部署级精度,并强调了DTW作为资源密集型模型的可行替代方案的潜力。结果还证明了时间窗口对于提高作物分类研究的运行时间和准确性的有效性,即使没有种植时间框架的先验知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信