{"title":"Bohr phenomenon for harmonic Bloch functions","authors":"V. Allu, H. Halder","doi":"10.1007/s10476-025-00063-y","DOIUrl":null,"url":null,"abstract":"<div><p>\nFor <span>\\(\\alpha \\in (0,\\infty)\\)</span>, let \n<span>\\(\\mathcal{B}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> denote the class of <span>\\(\\alpha\\)</span>-Bloch mappings on a proper simply connected domain <span>\\(\\Omega \\subseteq \\mathbb{C}\\)</span>. \nIn this article, we introduce the class <span>\\(\\mathcal{B}^{*}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> of harmonic <span>\\(\\alpha\\)</span>-Bloch-type mappings on a proper simply connected domain <span>\\(\\Omega \\subseteq \\mathbb{C}\\)</span> and study several interesting properties of the classes <span>\\(\\mathcal{B}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> and <span>\\(\\mathcal{B}^{*}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> when <span>\\(\\Omega\\)</span> is proper simply connected domain and the shifted disk <span>\\(\\Omega_{\\gamma}\\)</span> containing <span>\\(\\mathbb{D}\\)</span>, where \n</p><div><div><span>$$\\Omega_{\\gamma}:=\\big\\{z\\in\\mathbb{C} : \\big|z+\\frac{\\gamma}{1-\\gamma}\\big|<\\frac{1}{1-\\gamma}\\big\\}$$</span></div></div><p> and <span>\\(0 \\leq \\gamma <1\\)</span>. For <span>\\(f \\in \\mathcal{B}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> (respectively <span>\\(\\mathcal{B}^{*}_{\\mathcal{H},\\Omega}(\\alpha))\\)</span> of the form <span>\\(f(z)=h(z) + \\overline{g(z)}=\\sum_{n=0}^{\\infty}a_nz^n + \\overline{\\sum_{n=1}^{\\infty}b_nz^n}\\)</span> in <span>\\(\\mathbb{D}\\)</span> with Bloch norm <span>\\( \\lVert f \\rVert _{\\mathcal{H},\\Omega, \\alpha} \\leq 1\\)</span> (respectively \n<span>\\( \\lVert f \\rVert ^{*}_{\\mathcal{H},\\Omega, \\alpha} \\leq 1\\)</span>), we define the Bloch–Bohr radius for the class <span>\\(\\mathcal{B}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> (respectively \n<span>\\(\\mathcal{B}^{*}_{\\mathcal{H},\\Omega}(\\alpha))\\)</span> to be the largest radius \n<span>\\(r_{\\Omega,\\alpha} \\in (0,1)\\)</span> such that <span>\\(\\sum_{n=0}^{\\infty}(|a_n|+|b_{n}|) r^n\\leq 1\\)</span> for \n<span>\\(r \\leq r_{\\Omega, \\alpha}\\)</span> and for all <span>\\(f \\in \\mathcal{B}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> (respectively <span>\\(\\mathcal{B}^{*}_{\\mathcal{H},\\Omega}(\\alpha))\\)</span>. We also investigate Bloch–Bohr radius for the classes <span>\\(\\mathcal{B}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> and <span>\\(\\mathcal{B}^{*}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> on simply connected domain <span>\\(\\Omega\\)</span> containing \n<span>\\(\\mathbb{D}\\)</span>.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"51 1","pages":"35 - 62"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-025-00063-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-025-00063-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For \(\alpha \in (0,\infty)\), let
\(\mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) denote the class of \(\alpha\)-Bloch mappings on a proper simply connected domain \(\Omega \subseteq \mathbb{C}\).
In this article, we introduce the class \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha)\) of harmonic \(\alpha\)-Bloch-type mappings on a proper simply connected domain \(\Omega \subseteq \mathbb{C}\) and study several interesting properties of the classes \(\mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) and \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha)\) when \(\Omega\) is proper simply connected domain and the shifted disk \(\Omega_{\gamma}\) containing \(\mathbb{D}\), where
and \(0 \leq \gamma <1\). For \(f \in \mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) (respectively \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha))\) of the form \(f(z)=h(z) + \overline{g(z)}=\sum_{n=0}^{\infty}a_nz^n + \overline{\sum_{n=1}^{\infty}b_nz^n}\) in \(\mathbb{D}\) with Bloch norm \( \lVert f \rVert _{\mathcal{H},\Omega, \alpha} \leq 1\) (respectively
\( \lVert f \rVert ^{*}_{\mathcal{H},\Omega, \alpha} \leq 1\)), we define the Bloch–Bohr radius for the class \(\mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) (respectively
\(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha))\) to be the largest radius
\(r_{\Omega,\alpha} \in (0,1)\) such that \(\sum_{n=0}^{\infty}(|a_n|+|b_{n}|) r^n\leq 1\) for
\(r \leq r_{\Omega, \alpha}\) and for all \(f \in \mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) (respectively \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha))\). We also investigate Bloch–Bohr radius for the classes \(\mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) and \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha)\) on simply connected domain \(\Omega\) containing
\(\mathbb{D}\).
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.