The ESAFORM benchmark 2023: interlaboratory comparison benchmark for the characterization of microstructural grain growth and dynamic recrystallization kinetics of a single-phase Ni-base superalloy
Julen Agirre, Daniel Bernal, Baptiste Flipon, Marc Bernacki, Holger Brüggemann, David Bailly, Marion Merklein, Hinnerk Hagenah, Jan Henning Risse, Łukasz Madej, Krzysztof Muszka, Kamil Cichocki, Łukasz Poloczek, Olga Bylya, Aleksey Reshetov, Pascal De Micheli, Julien Barlier, Andreas Stark, Uceu F. H. Suhuddin, Peter Staron, Benjamin Klusemann, Lander Galdos
{"title":"The ESAFORM benchmark 2023: interlaboratory comparison benchmark for the characterization of microstructural grain growth and dynamic recrystallization kinetics of a single-phase Ni-base superalloy","authors":"Julen Agirre, Daniel Bernal, Baptiste Flipon, Marc Bernacki, Holger Brüggemann, David Bailly, Marion Merklein, Hinnerk Hagenah, Jan Henning Risse, Łukasz Madej, Krzysztof Muszka, Kamil Cichocki, Łukasz Poloczek, Olga Bylya, Aleksey Reshetov, Pascal De Micheli, Julien Barlier, Andreas Stark, Uceu F. H. Suhuddin, Peter Staron, Benjamin Klusemann, Lander Galdos","doi":"10.1007/s12289-025-01893-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an extensive benchmark study conducted across eight European research centres, focusing on the high-temperature testing of the Alloy 625 nickel-based superalloy to evaluate its flow behaviour and microstructural evolution, including grain growth (GG) and dynamic recrystallization (DRX). Uniaxial compression tests were performed at 1050 °C and three strain rates (0.1 s⁻<sup>1</sup>, 1 s⁻<sup>1</sup>, and 10 s⁻<sup>1</sup>) using six testing facilities categorised into three types: two conventional thermomechanical machines equipped with electrical resistance furnaces, two deformation dilatometers with induction heating, and two Gleeble machines with Joule heating. Flow curves were compared, and EBSD analysis was conducted to examine DRX. Virtual twins of tests were developed to estimate the thermomechanical history at the centre of the samples, where microstructural observations were conducted. The study methodically discussed the variability in thermomechanical behaviour and DRX results. Additionally, GG was investigated through heat treatments at 1150ºC for various hold times, using the three heating methods mentioned. Significant effects of the heating methods on GG were identified. <i>In-situ</i> synchrotron analysis at PETRA III DESY provided deeper insights into microstructural evolution. Considering the extensive findings of this research, this paper aims to establish guidelines and define best practices for high-temperature testing to characterise the thermomechanical behaviour and microstructural evolution of materials, while providing insights for advancing experimental mechanics and optimising constitutive model development.\n</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-025-01893-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01893-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an extensive benchmark study conducted across eight European research centres, focusing on the high-temperature testing of the Alloy 625 nickel-based superalloy to evaluate its flow behaviour and microstructural evolution, including grain growth (GG) and dynamic recrystallization (DRX). Uniaxial compression tests were performed at 1050 °C and three strain rates (0.1 s⁻1, 1 s⁻1, and 10 s⁻1) using six testing facilities categorised into three types: two conventional thermomechanical machines equipped with electrical resistance furnaces, two deformation dilatometers with induction heating, and two Gleeble machines with Joule heating. Flow curves were compared, and EBSD analysis was conducted to examine DRX. Virtual twins of tests were developed to estimate the thermomechanical history at the centre of the samples, where microstructural observations were conducted. The study methodically discussed the variability in thermomechanical behaviour and DRX results. Additionally, GG was investigated through heat treatments at 1150ºC for various hold times, using the three heating methods mentioned. Significant effects of the heating methods on GG were identified. In-situ synchrotron analysis at PETRA III DESY provided deeper insights into microstructural evolution. Considering the extensive findings of this research, this paper aims to establish guidelines and define best practices for high-temperature testing to characterise the thermomechanical behaviour and microstructural evolution of materials, while providing insights for advancing experimental mechanics and optimising constitutive model development.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.