{"title":"Hydrodynamical properties of baryon rich thermal plasma with flavour quarks","authors":"Rishi Pokhrel, Tanay K. Dey","doi":"10.1140/epjc/s10052-025-14039-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we holographically study the hydrodynamical properties of <span>\\(\\mathcal {N} = 4\\)</span> strongly coupled Super Yang–Mills baryon rich thermal plasma with large number of flavour quarks. Specifically, we study the drag force acting on the moving heavy probe quark and corresponding energy loss. We also study the jet quenching parameter, screening length and binding energy of the quark–antiquark pair. Due to the presence of finite baryon density and flavour quarks the drag force, energy loss, jet quenching parameter and binding energy of the quark–antiquark pair are enhanced for the increase in temperature. However, the screening length of the quark–antiquark pair is reduced, leading to the thermal plasma phase being achieved at a lower temperature, which is consistent with the thermal phase diagram of the quark–gluon plasma. We observed that the perpendicular orientation of quark–antiquark pair with respect to the direction of motion deconfined early compare to the parallel orientation once temperature raises.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14039-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14039-7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we holographically study the hydrodynamical properties of \(\mathcal {N} = 4\) strongly coupled Super Yang–Mills baryon rich thermal plasma with large number of flavour quarks. Specifically, we study the drag force acting on the moving heavy probe quark and corresponding energy loss. We also study the jet quenching parameter, screening length and binding energy of the quark–antiquark pair. Due to the presence of finite baryon density and flavour quarks the drag force, energy loss, jet quenching parameter and binding energy of the quark–antiquark pair are enhanced for the increase in temperature. However, the screening length of the quark–antiquark pair is reduced, leading to the thermal plasma phase being achieved at a lower temperature, which is consistent with the thermal phase diagram of the quark–gluon plasma. We observed that the perpendicular orientation of quark–antiquark pair with respect to the direction of motion deconfined early compare to the parallel orientation once temperature raises.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.