{"title":"Investigation on the spiral-groove of flexible skew rolling hollow shafts with mandrel","authors":"Xiaoqing Cao, Baoyu Wang","doi":"10.1007/s12289-025-01894-8","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible skew rolling (FSR) of hollow shafts with a mandrel represents a novel near-net-forming technology for hollow shafts. Surface quality, particularly the presence of spiral mark defects, poses a significant challenge in achieving precision forming. In this paper, the formation mechanism of spiral marks of hollow FSR shaft with mandrel was studied through experimental methods and finite element (FE) simulations, and the morphology of spiral marks under different rolling parameters is analyzed. Our findings indicate that the initiation of spiral marks occurs at the point where the rolled piece separates from the rolls. The outer spiral marks are attributed to the mismatch between the radial and axial metal flow; when the rolled part separates from the rolls, the metal that has exited the rolls is influenced by the deforming metal still within the rolls, resulting in an accumulation of excess material that takes on a spiral shape, mirroring the profile of the rolled piece. The intensity of spiral marks increases with higher swing angles, greater reduction ratios, and larger mandrel diameters, while decreasing with an increase in relative wall thickness. The spiral mark defect could be mitigated by extending the sizing section length, incorporating the unloading fillet and selecting appropriate rolling parameters. When the roll sizing length increased from 20 to 30 mm and the unloading fillet is set at 5 mm, the depth of spiral marks was improved by 21.8%. The results elucidate the causes of spiral marks on hollow shafts produced by FSR with a mandrel and provide theoretical guidance for selecting process parameters in production applications.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-025-01894-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01894-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible skew rolling (FSR) of hollow shafts with a mandrel represents a novel near-net-forming technology for hollow shafts. Surface quality, particularly the presence of spiral mark defects, poses a significant challenge in achieving precision forming. In this paper, the formation mechanism of spiral marks of hollow FSR shaft with mandrel was studied through experimental methods and finite element (FE) simulations, and the morphology of spiral marks under different rolling parameters is analyzed. Our findings indicate that the initiation of spiral marks occurs at the point where the rolled piece separates from the rolls. The outer spiral marks are attributed to the mismatch between the radial and axial metal flow; when the rolled part separates from the rolls, the metal that has exited the rolls is influenced by the deforming metal still within the rolls, resulting in an accumulation of excess material that takes on a spiral shape, mirroring the profile of the rolled piece. The intensity of spiral marks increases with higher swing angles, greater reduction ratios, and larger mandrel diameters, while decreasing with an increase in relative wall thickness. The spiral mark defect could be mitigated by extending the sizing section length, incorporating the unloading fillet and selecting appropriate rolling parameters. When the roll sizing length increased from 20 to 30 mm and the unloading fillet is set at 5 mm, the depth of spiral marks was improved by 21.8%. The results elucidate the causes of spiral marks on hollow shafts produced by FSR with a mandrel and provide theoretical guidance for selecting process parameters in production applications.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.