Sining Xiao;Peijin Wang;Wenhui Diao;Kun Fu;Xian Sun
{"title":"A Multimodal Semantic Segmentation Framework for Heterogeneous Optical and Complex SAR Data","authors":"Sining Xiao;Peijin Wang;Wenhui Diao;Kun Fu;Xian Sun","doi":"10.1109/JSTARS.2025.3542487","DOIUrl":null,"url":null,"abstract":"The advancement of remote sensing technology has led to a progressive enhancement in the resolution of remote sensing data, offering a multiperspective approach to Earth observation and facilitating a more comprehensive scene interpretation. As two most commonly utilized data sources in remote sensing, optical images, and synthetic aperture radar (SAR) data can provide complementary information, effectively compensating for the limitations inherent to a single modality. However, existing methods for using these two data sources face the following issues. First, insufficient utilization of the complete information provided by the source data. Second, inadequate consideration of the distinct characteristics of different modalities during feature extraction. Third, ignoring the misalignment between heterogeneous data, leading to large information loss. To tackle these challenges, we initially construct a benchmark dataset comprising complex-valued SAR data and optical images, named Multi-Complex-Seg. In order to fully mine the complete and valid information provided by both data sources, we construct a multimodal segmentation framework built on the theory of “subdomain extraction and cross-domain fusion,” in which we design a more suitable feature extractor for complex-valued SAR data, fully considering the unique geometric properties. In addition, a dynamic feature alignment module (DFAM) is proposed to further adjust the cross-modal features, and Cross-modal heterogeneous feature fusion module (CHFFM) first maps features into the same latent space to obtain better fused features. Both DFAM and CHFFM together reduce the huge semantic gap between modalities, thus facilitating the extraction of intramodal specificity and cross-modal complementarity. Extensive experiments on the proposed Multi-Complex-Seg confirm the effectiveness of our framework in comparison to other state-of-the-art multimodal segmentation approaches.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"8083-8098"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891164","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10891164/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of remote sensing technology has led to a progressive enhancement in the resolution of remote sensing data, offering a multiperspective approach to Earth observation and facilitating a more comprehensive scene interpretation. As two most commonly utilized data sources in remote sensing, optical images, and synthetic aperture radar (SAR) data can provide complementary information, effectively compensating for the limitations inherent to a single modality. However, existing methods for using these two data sources face the following issues. First, insufficient utilization of the complete information provided by the source data. Second, inadequate consideration of the distinct characteristics of different modalities during feature extraction. Third, ignoring the misalignment between heterogeneous data, leading to large information loss. To tackle these challenges, we initially construct a benchmark dataset comprising complex-valued SAR data and optical images, named Multi-Complex-Seg. In order to fully mine the complete and valid information provided by both data sources, we construct a multimodal segmentation framework built on the theory of “subdomain extraction and cross-domain fusion,” in which we design a more suitable feature extractor for complex-valued SAR data, fully considering the unique geometric properties. In addition, a dynamic feature alignment module (DFAM) is proposed to further adjust the cross-modal features, and Cross-modal heterogeneous feature fusion module (CHFFM) first maps features into the same latent space to obtain better fused features. Both DFAM and CHFFM together reduce the huge semantic gap between modalities, thus facilitating the extraction of intramodal specificity and cross-modal complementarity. Extensive experiments on the proposed Multi-Complex-Seg confirm the effectiveness of our framework in comparison to other state-of-the-art multimodal segmentation approaches.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.