GANFlow: A Hybrid Model for SAR Image Target Open-Set Recognition Based on GAN and the Flow-Based Module

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jikai Qin;Jiusheng Han;Zheng Liu;Lei Ran;Rong Xie;Tat-Soon Yeo
{"title":"GANFlow: A Hybrid Model for SAR Image Target Open-Set Recognition Based on GAN and the Flow-Based Module","authors":"Jikai Qin;Jiusheng Han;Zheng Liu;Lei Ran;Rong Xie;Tat-Soon Yeo","doi":"10.1109/JSTARS.2025.3542738","DOIUrl":null,"url":null,"abstract":"Most synthetic aperture radar (SAR) automatic target recognition (ATR) methods can achieve good recognition results only under the closed-set assumption. However, in practical applications, ATR models are often exposed to open environments, the general closed-set method may misclassify unknown categories as known categories, which is not reasonable. To tackle this issue, this article proposes an end-to-end hybrid model for SAR image open-set recognition (OSR), named GANFlow, which combines a generative adversarial network (GAN) with a flow-based module. The GANFlow achieves accurate classification of known categories and effective rejection of unknown categories. In this model, a classifiable convolution GAN is first designed to complete the training of the feature extraction module and classifier. Through adversarial training, the generated images enrich the training samples, which improves the ability of feature extraction and classification of the discriminator. Then, to find the difference in the probability density distribution of the extracted features, a flow-based module is adopted. Also, the features avoid interference from irrelevant background information in SAR images. Furthermore, by establishing an appropriate threshold, unknown categories can be efficiently rejected. Finally, the outputs of the classifier and the flow-based module are combined to complete the OSR of the SAR image target. The experimental results on the MSTAR and OpenSARShip public-measured datasets verify the robustness and generalization of the proposed method.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"7083-7099"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891547","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10891547/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Most synthetic aperture radar (SAR) automatic target recognition (ATR) methods can achieve good recognition results only under the closed-set assumption. However, in practical applications, ATR models are often exposed to open environments, the general closed-set method may misclassify unknown categories as known categories, which is not reasonable. To tackle this issue, this article proposes an end-to-end hybrid model for SAR image open-set recognition (OSR), named GANFlow, which combines a generative adversarial network (GAN) with a flow-based module. The GANFlow achieves accurate classification of known categories and effective rejection of unknown categories. In this model, a classifiable convolution GAN is first designed to complete the training of the feature extraction module and classifier. Through adversarial training, the generated images enrich the training samples, which improves the ability of feature extraction and classification of the discriminator. Then, to find the difference in the probability density distribution of the extracted features, a flow-based module is adopted. Also, the features avoid interference from irrelevant background information in SAR images. Furthermore, by establishing an appropriate threshold, unknown categories can be efficiently rejected. Finally, the outputs of the classifier and the flow-based module are combined to complete the OSR of the SAR image target. The experimental results on the MSTAR and OpenSARShip public-measured datasets verify the robustness and generalization of the proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信