{"title":"Multi-View Clustering With Consistent Local Structure-Guided Graph Fusion","authors":"Naiyao Liang;Zuyuan Yang;Wei Han;Zhenni Li;Shengli Xie","doi":"10.1109/TETCI.2024.3423459","DOIUrl":null,"url":null,"abstract":"With the development of camera and sensor technologies, multi-view data are ubiquitous and require more technologies to process them. Multi-view clustering with graph fusion has recently attracted considerable attention as multiple graphs defined by views can provide more comprehensive information for clustering. Different from previous methods that rarely consider the locality of the fused graph, in this paper, we propose an <inline-formula><tex-math>$\\ell _{0}$</tex-math></inline-formula>-norm constrained graph fusion model with the ability to preserve the consistent local structure of the fused graph, as well as the view weights which are obtained adaptively. Also, to solve the proposed model, we design an efficient algorithm with a closed-form solution for each variable, together with the analysis of the convergence. Experimental results indicate that the learned consistent local structure can refine and guide the graph fusion to achieve a better graph, and our method outperforms the state-of-the-art graph fusion methods.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"2026-2032"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10680470/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of camera and sensor technologies, multi-view data are ubiquitous and require more technologies to process them. Multi-view clustering with graph fusion has recently attracted considerable attention as multiple graphs defined by views can provide more comprehensive information for clustering. Different from previous methods that rarely consider the locality of the fused graph, in this paper, we propose an $\ell _{0}$-norm constrained graph fusion model with the ability to preserve the consistent local structure of the fused graph, as well as the view weights which are obtained adaptively. Also, to solve the proposed model, we design an efficient algorithm with a closed-form solution for each variable, together with the analysis of the convergence. Experimental results indicate that the learned consistent local structure can refine and guide the graph fusion to achieve a better graph, and our method outperforms the state-of-the-art graph fusion methods.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.