MssNet: An Efficient Spatial Attention Model for Early Recognition of Alzheimer's Disease

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiayu Ye;Dan Pan;An Zeng;Yiqun Zhang;Qiuping Chen;Yang Liu
{"title":"MssNet: An Efficient Spatial Attention Model for Early Recognition of Alzheimer's Disease","authors":"Jiayu Ye;Dan Pan;An Zeng;Yiqun Zhang;Qiuping Chen;Yang Liu","doi":"10.1109/TETCI.2025.3537942","DOIUrl":null,"url":null,"abstract":"Deep learning models are widely used in medical image-guided disease recognition and have achieved outstanding performance. Voxel-based models are typically the default choice for deep learning-based MRI analysis, which require high computational resources and large data volumes, making them inefficient for rapid disease screening. Simultaneously, the existing Alzheimer's disease (AD) recognition model is primarily comprised of Convolutional Neural Network (CNN) structures. With the increasing of the network depth, the fine-grained details of global features tend to be partially lost. Therefore, we propose a Multi-scale spatial self-attention Network (MssNet) that effectively captures both coarse-grained and fine-grained features. We design to select the target slice based on image entropy to achieve efficient slice-based AD recognition. To capture multi-level spatial information, a novel spatial attention mechanism and spatial self-attention attention are designed. The former is utilized to collect critical spatial information and identify areas that are likely to be lesions, the latter investigates the relationship between features in different image regions through spatial interaction by pure convolutional blocks. MssNet fully utilizes multi-scale information at different granularities for spatial feature interaction, providing it with strong modeling and information understanding capabilities. It has achieved excellent performance in the recognition tasks of Alzheimer's Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) datasets. Moreover, MssNet is a lightweight model involving lower scale parameters against the Voxel-based ones, while demonstrating strong generalization capability.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"1454-1468"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10896617/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning models are widely used in medical image-guided disease recognition and have achieved outstanding performance. Voxel-based models are typically the default choice for deep learning-based MRI analysis, which require high computational resources and large data volumes, making them inefficient for rapid disease screening. Simultaneously, the existing Alzheimer's disease (AD) recognition model is primarily comprised of Convolutional Neural Network (CNN) structures. With the increasing of the network depth, the fine-grained details of global features tend to be partially lost. Therefore, we propose a Multi-scale spatial self-attention Network (MssNet) that effectively captures both coarse-grained and fine-grained features. We design to select the target slice based on image entropy to achieve efficient slice-based AD recognition. To capture multi-level spatial information, a novel spatial attention mechanism and spatial self-attention attention are designed. The former is utilized to collect critical spatial information and identify areas that are likely to be lesions, the latter investigates the relationship between features in different image regions through spatial interaction by pure convolutional blocks. MssNet fully utilizes multi-scale information at different granularities for spatial feature interaction, providing it with strong modeling and information understanding capabilities. It has achieved excellent performance in the recognition tasks of Alzheimer's Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) datasets. Moreover, MssNet is a lightweight model involving lower scale parameters against the Voxel-based ones, while demonstrating strong generalization capability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信