Binary Classification From $M$-Tuple Similarity-Confidence Data

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Junpeng Li;Jiahe Qin;Changchun Hua;Yana Yang
{"title":"Binary Classification From $M$-Tuple Similarity-Confidence Data","authors":"Junpeng Li;Jiahe Qin;Changchun Hua;Yana Yang","doi":"10.1109/TETCI.2025.3537938","DOIUrl":null,"url":null,"abstract":"A recent advancement in weakly-supervised learning utilizes pairwise similarity-confidence (Sconf) data, allowing the training of binary classifiers using unlabeled data pairs with confidence scores indicating similarity. However, extending this approach to handle high-order tuple data (e.g., triplets, quadruplets, quintuplets) with similarity-confidence scores presents significant challenges. To address these issues, this paper introduces <italic>M-tuple similarity-confidence (Msconf) learning</i>, a novel framework that extends <italic>Sconf learning</i> to <inline-formula><tex-math>$M$</tex-math></inline-formula>-tuples of varying sizes. The proposed method includes a detailed process for generating <inline-formula><tex-math>$M$</tex-math></inline-formula>-tuple similarity-confidence data and deriving an unbiased risk estimator to train classifiers effectively. Additionally, risk correction models are implemented to reduce potential overfitting, and a theoretical generalization bound is established. Extensive experiments demonstrate the practical effectiveness and robustness of the proposed <italic>Msconf learning</i> framework.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"1418-1427"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10899899/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A recent advancement in weakly-supervised learning utilizes pairwise similarity-confidence (Sconf) data, allowing the training of binary classifiers using unlabeled data pairs with confidence scores indicating similarity. However, extending this approach to handle high-order tuple data (e.g., triplets, quadruplets, quintuplets) with similarity-confidence scores presents significant challenges. To address these issues, this paper introduces M-tuple similarity-confidence (Msconf) learning, a novel framework that extends Sconf learning to $M$-tuples of varying sizes. The proposed method includes a detailed process for generating $M$-tuple similarity-confidence data and deriving an unbiased risk estimator to train classifiers effectively. Additionally, risk correction models are implemented to reduce potential overfitting, and a theoretical generalization bound is established. Extensive experiments demonstrate the practical effectiveness and robustness of the proposed Msconf learning framework.
元组相似性置信度数据的二元分类
弱监督学习的最新进展利用两两相似置信度(Sconf)数据,允许使用未标记的数据对训练二元分类器,其置信度分数表示相似性。然而,将这种方法扩展到处理具有相似性置信度分数的高阶元组数据(例如,三胞胎、四胞胎、五胞胎)存在重大挑战。为了解决这些问题,本文引入了M元组相似置信度(Msconf)学习,这是一个将Sconf学习扩展到不同大小的$M元组的新框架。提出的方法包括生成$M$元组相似度置信度数据的详细过程,以及推导无偏风险估计器以有效地训练分类器。建立了风险校正模型,减少了潜在的过拟合,并建立了理论泛化界。大量的实验证明了所提出的Msconf学习框架的实用性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信