Junzhe Zhang;Gexin Liu;Junteng Zhang;Dandan Ding;Zhan Ma
{"title":"DeepPCC: Learned Lossy Point Cloud Compression","authors":"Junzhe Zhang;Gexin Liu;Junteng Zhang;Dandan Ding;Zhan Ma","doi":"10.1109/TETCI.2024.3467192","DOIUrl":null,"url":null,"abstract":"We propose DeepPCC, an end-to-end learning-based approach for the lossy compression of large-scale object point clouds. For both geometry and attribute components, we introduce the Multiscale Neighborhood Information Aggregation (NIA) mechanism, which applies resolution downscaling progressively (<italic>i.e.</i>, dyadic downsampling of geometry and average pooling of attribute) and combines sparse convolution and local self-attention at each resolution scale for effective feature representation. Under a simple autoencoder structure, scale-wise NIA blocks are stacked as the analysis and synthesis transform in the encoder-decoder pair to best characterize spatial neighbors for accurate approximation of geometry occupancy probability and attribute intensity. Experiments demonstrate that DeepPCC remarkably outperforms state-of-the-art rules-based MPEG G-PCC and learning-based solutions both quantitatively and qualitatively, providing strong evidence that DeepPCC is a promising solution for emerging AI-based PCC.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"1897-1909"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10714474/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We propose DeepPCC, an end-to-end learning-based approach for the lossy compression of large-scale object point clouds. For both geometry and attribute components, we introduce the Multiscale Neighborhood Information Aggregation (NIA) mechanism, which applies resolution downscaling progressively (i.e., dyadic downsampling of geometry and average pooling of attribute) and combines sparse convolution and local self-attention at each resolution scale for effective feature representation. Under a simple autoencoder structure, scale-wise NIA blocks are stacked as the analysis and synthesis transform in the encoder-decoder pair to best characterize spatial neighbors for accurate approximation of geometry occupancy probability and attribute intensity. Experiments demonstrate that DeepPCC remarkably outperforms state-of-the-art rules-based MPEG G-PCC and learning-based solutions both quantitatively and qualitatively, providing strong evidence that DeepPCC is a promising solution for emerging AI-based PCC.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.