Exploiting High Performance Spiking Neural Networks With Efficient Spiking Patterns

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Guobin Shen;Dongcheng Zhao;Yi Zeng
{"title":"Exploiting High Performance Spiking Neural Networks With Efficient Spiking Patterns","authors":"Guobin Shen;Dongcheng Zhao;Yi Zeng","doi":"10.1109/TETCI.2025.3540408","DOIUrl":null,"url":null,"abstract":"Spiking Neural Networks (SNNs) use discrete spike sequences to transmit information, which significantly mimics the information transmission of the brain. Although this binarized form of representation dramatically enhances the energy efficiency and robustness of SNNs, it also leaves a large gap between the performance of SNNs and Artificial Neural Networks based on real values. There are many different spike patterns in the brain, and the dynamic synergy of these spike patterns greatly enriches the representation capability. Inspired by spike patterns in biological neurons, this paper introduces the dynamic Burst pattern and designs the Leaky Integrate and Fire or Burst (IF&B) neuron that can make a trade-off between short-time performance and dynamic temporal performance from the perspective of network information capacity. IF&B neuron exhibits three modes, resting, Regular spike, and Burst spike. The burst density of the neuron can be adaptively adjusted, which significantly enriches the characterization capability. We also propose a decoupling method that can losslessly decouple IF&B neurons into equivalent LIF neurons, which demonstrates that IF&B neurons can be efficiently implemented on neuromorphic hardware. We conducted experiments on the static datasets CIFAR10, CIFAR100, and ImageNet, which showed that we greatly improved the performance of the SNNs while significantly reducing the network latency. We also conducted experiments on neuromorphic datasets DVS-CIFAR10 and NCALTECH101 and showed that we achieved state-of-the-art with a small network structure.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"1480-1489"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10897918/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking Neural Networks (SNNs) use discrete spike sequences to transmit information, which significantly mimics the information transmission of the brain. Although this binarized form of representation dramatically enhances the energy efficiency and robustness of SNNs, it also leaves a large gap between the performance of SNNs and Artificial Neural Networks based on real values. There are many different spike patterns in the brain, and the dynamic synergy of these spike patterns greatly enriches the representation capability. Inspired by spike patterns in biological neurons, this paper introduces the dynamic Burst pattern and designs the Leaky Integrate and Fire or Burst (IF&B) neuron that can make a trade-off between short-time performance and dynamic temporal performance from the perspective of network information capacity. IF&B neuron exhibits three modes, resting, Regular spike, and Burst spike. The burst density of the neuron can be adaptively adjusted, which significantly enriches the characterization capability. We also propose a decoupling method that can losslessly decouple IF&B neurons into equivalent LIF neurons, which demonstrates that IF&B neurons can be efficiently implemented on neuromorphic hardware. We conducted experiments on the static datasets CIFAR10, CIFAR100, and ImageNet, which showed that we greatly improved the performance of the SNNs while significantly reducing the network latency. We also conducted experiments on neuromorphic datasets DVS-CIFAR10 and NCALTECH101 and showed that we achieved state-of-the-art with a small network structure.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信