{"title":"Exploiting High Performance Spiking Neural Networks With Efficient Spiking Patterns","authors":"Guobin Shen;Dongcheng Zhao;Yi Zeng","doi":"10.1109/TETCI.2025.3540408","DOIUrl":null,"url":null,"abstract":"Spiking Neural Networks (SNNs) use discrete spike sequences to transmit information, which significantly mimics the information transmission of the brain. Although this binarized form of representation dramatically enhances the energy efficiency and robustness of SNNs, it also leaves a large gap between the performance of SNNs and Artificial Neural Networks based on real values. There are many different spike patterns in the brain, and the dynamic synergy of these spike patterns greatly enriches the representation capability. Inspired by spike patterns in biological neurons, this paper introduces the dynamic Burst pattern and designs the Leaky Integrate and Fire or Burst (IF&B) neuron that can make a trade-off between short-time performance and dynamic temporal performance from the perspective of network information capacity. IF&B neuron exhibits three modes, resting, Regular spike, and Burst spike. The burst density of the neuron can be adaptively adjusted, which significantly enriches the characterization capability. We also propose a decoupling method that can losslessly decouple IF&B neurons into equivalent LIF neurons, which demonstrates that IF&B neurons can be efficiently implemented on neuromorphic hardware. We conducted experiments on the static datasets CIFAR10, CIFAR100, and ImageNet, which showed that we greatly improved the performance of the SNNs while significantly reducing the network latency. We also conducted experiments on neuromorphic datasets DVS-CIFAR10 and NCALTECH101 and showed that we achieved state-of-the-art with a small network structure.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"1480-1489"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10897918/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Spiking Neural Networks (SNNs) use discrete spike sequences to transmit information, which significantly mimics the information transmission of the brain. Although this binarized form of representation dramatically enhances the energy efficiency and robustness of SNNs, it also leaves a large gap between the performance of SNNs and Artificial Neural Networks based on real values. There are many different spike patterns in the brain, and the dynamic synergy of these spike patterns greatly enriches the representation capability. Inspired by spike patterns in biological neurons, this paper introduces the dynamic Burst pattern and designs the Leaky Integrate and Fire or Burst (IF&B) neuron that can make a trade-off between short-time performance and dynamic temporal performance from the perspective of network information capacity. IF&B neuron exhibits three modes, resting, Regular spike, and Burst spike. The burst density of the neuron can be adaptively adjusted, which significantly enriches the characterization capability. We also propose a decoupling method that can losslessly decouple IF&B neurons into equivalent LIF neurons, which demonstrates that IF&B neurons can be efficiently implemented on neuromorphic hardware. We conducted experiments on the static datasets CIFAR10, CIFAR100, and ImageNet, which showed that we greatly improved the performance of the SNNs while significantly reducing the network latency. We also conducted experiments on neuromorphic datasets DVS-CIFAR10 and NCALTECH101 and showed that we achieved state-of-the-art with a small network structure.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.