VITMST++: Efficient Hyperspectral Reconstruction Through Vision Transformer-Based Spatial Compression

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ana C. Caznok Silveira;Diedre S. do Carmo;Lucas H. Ueda;Denis G. Fantinato;Paula D. P. Costa;Leticia Rittner
{"title":"VITMST++: Efficient Hyperspectral Reconstruction Through Vision Transformer-Based Spatial Compression","authors":"Ana C. Caznok Silveira;Diedre S. do Carmo;Lucas H. Ueda;Denis G. Fantinato;Paula D. P. Costa;Leticia Rittner","doi":"10.1109/OJSP.2025.3544891","DOIUrl":null,"url":null,"abstract":"Hyperspectralchannel reconstruction transforms a subsampled multispectral image into hyperspectral imaging, providing higher spectral resolution without a dedicated acquisition hardware and camera. Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (MST++) is a state-of-the-art channel reconstruction technique, but it faces memory limitations for high spatial-resolution images. In this context, we introduced VITMST++, a novel architecture incorporating Vision Transformer embeddings for spatial compression, multi-resolution image context, and a custom channel-weighted loss. Developed for the ICASSP 2024 HyperSkin Challenge, VITMST++ outperforms the state-of-the-art MST++ in both performance and computational efficiency in channel reconstruction. In this work, we perform a deeper analysis on the main aspects of VITMST++ efficiency, quantitative performance, and generalization to other datasets. Results show that VITMST++ achieves similar values of SAM and SSIM hyperspectral reconstruction metrics when compared to state-of-the-art methods, while consuming up to three fold less memory and needing up to 10 times fewer multiply-add operations.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"398-404"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10900394","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10900394/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectralchannel reconstruction transforms a subsampled multispectral image into hyperspectral imaging, providing higher spectral resolution without a dedicated acquisition hardware and camera. Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (MST++) is a state-of-the-art channel reconstruction technique, but it faces memory limitations for high spatial-resolution images. In this context, we introduced VITMST++, a novel architecture incorporating Vision Transformer embeddings for spatial compression, multi-resolution image context, and a custom channel-weighted loss. Developed for the ICASSP 2024 HyperSkin Challenge, VITMST++ outperforms the state-of-the-art MST++ in both performance and computational efficiency in channel reconstruction. In this work, we perform a deeper analysis on the main aspects of VITMST++ efficiency, quantitative performance, and generalization to other datasets. Results show that VITMST++ achieves similar values of SAM and SSIM hyperspectral reconstruction metrics when compared to state-of-the-art methods, while consuming up to three fold less memory and needing up to 10 times fewer multiply-add operations.
基于视觉变换空间压缩的高效高光谱重建
高光谱通道重建将次采样的多光谱图像转换为高光谱成像,在没有专用采集硬件和相机的情况下提供更高的光谱分辨率。mst++是一种先进的信道重建技术,但它在处理高空间分辨率图像时面临内存限制。在此背景下,我们介绍了vitmst++,这是一种结合视觉转换器嵌入的新架构,用于空间压缩、多分辨率图像上下文和自定义信道加权损失。为ICASSP 2024超级皮肤挑战赛而开发的vitmst++在信道重建的性能和计算效率方面都优于最先进的mst++。在这项工作中,我们对vitmst++的效率、定量性能和推广到其他数据集的主要方面进行了更深入的分析。结果表明,与最先进的方法相比,vitmst++实现了相似的SAM和SSIM高光谱重建指标,同时消耗的内存减少了3倍,需要的乘法加运算减少了10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信