Ana C. Caznok Silveira;Diedre S. do Carmo;Lucas H. Ueda;Denis G. Fantinato;Paula D. P. Costa;Leticia Rittner
{"title":"VITMST++: Efficient Hyperspectral Reconstruction Through Vision Transformer-Based Spatial Compression","authors":"Ana C. Caznok Silveira;Diedre S. do Carmo;Lucas H. Ueda;Denis G. Fantinato;Paula D. P. Costa;Leticia Rittner","doi":"10.1109/OJSP.2025.3544891","DOIUrl":null,"url":null,"abstract":"Hyperspectralchannel reconstruction transforms a subsampled multispectral image into hyperspectral imaging, providing higher spectral resolution without a dedicated acquisition hardware and camera. Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (MST++) is a state-of-the-art channel reconstruction technique, but it faces memory limitations for high spatial-resolution images. In this context, we introduced VITMST++, a novel architecture incorporating Vision Transformer embeddings for spatial compression, multi-resolution image context, and a custom channel-weighted loss. Developed for the ICASSP 2024 HyperSkin Challenge, VITMST++ outperforms the state-of-the-art MST++ in both performance and computational efficiency in channel reconstruction. In this work, we perform a deeper analysis on the main aspects of VITMST++ efficiency, quantitative performance, and generalization to other datasets. Results show that VITMST++ achieves similar values of SAM and SSIM hyperspectral reconstruction metrics when compared to state-of-the-art methods, while consuming up to three fold less memory and needing up to 10 times fewer multiply-add operations.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"398-404"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10900394","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10900394/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperspectralchannel reconstruction transforms a subsampled multispectral image into hyperspectral imaging, providing higher spectral resolution without a dedicated acquisition hardware and camera. Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (MST++) is a state-of-the-art channel reconstruction technique, but it faces memory limitations for high spatial-resolution images. In this context, we introduced VITMST++, a novel architecture incorporating Vision Transformer embeddings for spatial compression, multi-resolution image context, and a custom channel-weighted loss. Developed for the ICASSP 2024 HyperSkin Challenge, VITMST++ outperforms the state-of-the-art MST++ in both performance and computational efficiency in channel reconstruction. In this work, we perform a deeper analysis on the main aspects of VITMST++ efficiency, quantitative performance, and generalization to other datasets. Results show that VITMST++ achieves similar values of SAM and SSIM hyperspectral reconstruction metrics when compared to state-of-the-art methods, while consuming up to three fold less memory and needing up to 10 times fewer multiply-add operations.