CHF enhancement in downward-facing boiling surface using shrouds for calandria vessel during severe accident in PHWRs

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
P.K. Verma , P.P. Kulkarni , A.K. Nayak
{"title":"CHF enhancement in downward-facing boiling surface using shrouds for calandria vessel during severe accident in PHWRs","authors":"P.K. Verma ,&nbsp;P.P. Kulkarni ,&nbsp;A.K. Nayak","doi":"10.1016/j.nucengdes.2025.114010","DOIUrl":null,"url":null,"abstract":"<div><div>The orientation of the heated surface significantly affects the boiling process. Boiling on a downward-facing surface is particularly challenging because bubble detachment is hindered, leading to longer bubble residence times and unique interactions than on vertical or inclined surfaces. This study investigates boiling on a large downward-facing flat surface (100 × 400 mm), focusing on critical heat flux (CHF) phenomenon. During the postulated severe accident, the situation arises in Pressurised Heavy Water Reactors (PHWRs) due to multiple failures of cooling systems and safety systems. The pressure tubes and calandria tubes have the potential to break, resulting in hot debris that falls to the bottom of the calandria vessel. The calandria vessel has a large curvature due to its larger diameter, and the bottommost portion is like a flat plate. To contain the hot debris or molten corium inside the vessel and maintain the integrity of the calandria vessel at a higher temperature is crucial to arrest the progress of a severe accident. The cooling of the vessel from outside without occurring CHF at the bottom location is important. Historically, downward-facing boiling has received limited attention, as it is normally not used in industrial applications owing to lower heat transfer and CHF values due to adverse buoyancy. Nonetheless, it is important to investigate because of the severe accident situation in PHWRs. Incorporating a simple technique of shrouds surrounding the calandria vessel can enhance the CHF by enhancing the buoyancy. This paper investigates the potential enhancement of CHF through the use of shrouds.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"437 ","pages":"Article 114010"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549325001876","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The orientation of the heated surface significantly affects the boiling process. Boiling on a downward-facing surface is particularly challenging because bubble detachment is hindered, leading to longer bubble residence times and unique interactions than on vertical or inclined surfaces. This study investigates boiling on a large downward-facing flat surface (100 × 400 mm), focusing on critical heat flux (CHF) phenomenon. During the postulated severe accident, the situation arises in Pressurised Heavy Water Reactors (PHWRs) due to multiple failures of cooling systems and safety systems. The pressure tubes and calandria tubes have the potential to break, resulting in hot debris that falls to the bottom of the calandria vessel. The calandria vessel has a large curvature due to its larger diameter, and the bottommost portion is like a flat plate. To contain the hot debris or molten corium inside the vessel and maintain the integrity of the calandria vessel at a higher temperature is crucial to arrest the progress of a severe accident. The cooling of the vessel from outside without occurring CHF at the bottom location is important. Historically, downward-facing boiling has received limited attention, as it is normally not used in industrial applications owing to lower heat transfer and CHF values due to adverse buoyancy. Nonetheless, it is important to investigate because of the severe accident situation in PHWRs. Incorporating a simple technique of shrouds surrounding the calandria vessel can enhance the CHF by enhancing the buoyancy. This paper investigates the potential enhancement of CHF through the use of shrouds.
重水堆重大事故中,炉壳罩增强下沸点表面CHF
受热表面的取向对沸腾过程有显著影响。与垂直或倾斜表面相比,在朝下的表面上沸腾尤其具有挑战性,因为气泡脱离受到阻碍,导致气泡停留时间更长,相互作用独特。本文研究了一个大的向下平面(100 × 400 mm)上的沸腾现象,重点研究了临界热流密度(CHF)现象。在假定的严重事故中,由于冷却系统和安全系统的多重失效,压水堆(PHWRs)会出现这种情况。压力管和坩埚管有可能破裂,导致热碎片落在坩埚的底部。万年历容器由于直径较大,曲率较大,最底部像一个平板。将热碎片或熔化的堆芯密封在容器内,并在较高温度下保持容器的完整性,对于阻止严重事故的发展至关重要。从外部冷却容器而不发生底部CHF是很重要的。从历史上看,向下沸腾受到的关注有限,因为它通常不用于工业应用,因为不利的浮力会降低传热和CHF值。然而,由于重水堆事故情况严重,对其进行调查是很重要的。结合一种简单的技术,将寿衣包裹在万年船周围,可以通过提高浮力来提高CHF。本文探讨了利用导流罩提高CHF的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Engineering and Design
Nuclear Engineering and Design 工程技术-核科学技术
CiteScore
3.40
自引率
11.80%
发文量
377
审稿时长
5 months
期刊介绍: Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology. Fundamentals of Reactor Design include: • Thermal-Hydraulics and Core Physics • Safety Analysis, Risk Assessment (PSA) • Structural and Mechanical Engineering • Materials Science • Fuel Behavior and Design • Structural Plant Design • Engineering of Reactor Components • Experiments Aspects beyond fundamentals of Reactor Design covered: • Accident Mitigation Measures • Reactor Control Systems • Licensing Issues • Safeguard Engineering • Economy of Plants • Reprocessing / Waste Disposal • Applications of Nuclear Energy • Maintenance • Decommissioning Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信