The RNA-binding protein LSM family regulating reproductive development via different RNA metabolism

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qin Chen, Ying Chen, Qingliang Zheng
{"title":"The RNA-binding protein LSM family regulating reproductive development via different RNA metabolism","authors":"Qin Chen,&nbsp;Ying Chen,&nbsp;Qingliang Zheng","doi":"10.1016/j.bbadis.2025.167808","DOIUrl":null,"url":null,"abstract":"<div><div>The LSM (Like-Sm) protein family, characterized by highly conserved LSM domains, is integral to ribonucleic acid (RNA) metabolism. Ubiquitously present in both eukaryotes and select prokaryotes, these proteins bind to RNA molecules with high specificity through their LSM domains. They can also form ring-shaped complexes with other proteins, thereby facilitating various fundamental cellular processes such as mRNA degradation, splicing, and ribosome biogenesis. LSM proteins play crucial roles in gametogenesis, early embryonic development, sex determination, gonadal maturation, and reproductive system formation. In pathological conditions, the absence of LSM14B leads to arrest of oocytes at mid-meiosis, downregulation of LSM4 expression is associated with abnormal spermatogenesis, and aberrant expression of LSM1 protein is linked to the occurrence and progression of breast cancer. This review focuses on the recent advances in the functional research of LSM proteins in reproduction.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 5","pages":"Article 167808"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092544392500153X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The LSM (Like-Sm) protein family, characterized by highly conserved LSM domains, is integral to ribonucleic acid (RNA) metabolism. Ubiquitously present in both eukaryotes and select prokaryotes, these proteins bind to RNA molecules with high specificity through their LSM domains. They can also form ring-shaped complexes with other proteins, thereby facilitating various fundamental cellular processes such as mRNA degradation, splicing, and ribosome biogenesis. LSM proteins play crucial roles in gametogenesis, early embryonic development, sex determination, gonadal maturation, and reproductive system formation. In pathological conditions, the absence of LSM14B leads to arrest of oocytes at mid-meiosis, downregulation of LSM4 expression is associated with abnormal spermatogenesis, and aberrant expression of LSM1 protein is linked to the occurrence and progression of breast cancer. This review focuses on the recent advances in the functional research of LSM proteins in reproduction.
RNA结合蛋白LSM家族通过不同的RNA代谢调节生殖发育
LSM (Like-Sm)蛋白家族以高度保守的LSM结构域为特征,是核糖核酸(RNA)代谢不可或缺的组成部分。这些蛋白普遍存在于真核生物和某些原核生物中,通过它们的LSM结构域与RNA分子结合,具有高特异性。它们还可以与其他蛋白质形成环状复合物,从而促进各种基本的细胞过程,如mRNA降解、剪接和核糖体生物发生。LSM蛋白在配子发生、早期胚胎发育、性别决定、性腺成熟和生殖系统形成中起着至关重要的作用。病理条件下,LSM14B缺失导致卵母细胞在减数分裂中期停滞,LSM4表达下调与精子发生异常有关,LSM1蛋白异常表达与乳腺癌的发生和进展有关。本文就LSM蛋白在生殖中的功能研究进展作一综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.30
自引率
0.00%
发文量
218
审稿时长
32 days
期刊介绍: BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信