Matteo Migliorini, Pavlos K. Zachos, David G. MacManus, Alexandros Giannouloudis
{"title":"Experimental investigation of unsteady fan-intake interactions using time-resolved stereoscopic particle image velocimetry","authors":"Matteo Migliorini, Pavlos K. Zachos, David G. MacManus, Alexandros Giannouloudis","doi":"10.1016/j.expthermflusci.2025.111482","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding engine response to unsteady intake flow distortion is a crucial requirement to de-risk the development of novel aircraft configurations. This is more critical for configurations with highly embedded engines. Recent advances in non-intrusive, laser-based flow diagnostics demonstrated the ability to measure unsteady flows in convoluted intakes with high resolution in time and space. This work presents novel non-intrusive, unsteady flow measurements ahead of a fan rotor coupled to a convoluted diffusive intake. The fan rotor caused a local increase of the maximum levels of swirl intensity at the blade tip region, as well as flow re-distribution at the interface plane between the fan and the inlet duct compared to the baseline configuration with no fan in place. This contributed to the reduction of the overall swirl angle unsteadiness across the main flow distortion frequencies. This research presents a notable advance in unsteady fan-intake interaction characterisation. The work shows that high-resolution optical measurements offer notably better understanding of these complex aerodynamic interactions and have the potential to be part of larger scale, industrial testing programmes for future product development and certification.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"166 ","pages":"Article 111482"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725000767","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding engine response to unsteady intake flow distortion is a crucial requirement to de-risk the development of novel aircraft configurations. This is more critical for configurations with highly embedded engines. Recent advances in non-intrusive, laser-based flow diagnostics demonstrated the ability to measure unsteady flows in convoluted intakes with high resolution in time and space. This work presents novel non-intrusive, unsteady flow measurements ahead of a fan rotor coupled to a convoluted diffusive intake. The fan rotor caused a local increase of the maximum levels of swirl intensity at the blade tip region, as well as flow re-distribution at the interface plane between the fan and the inlet duct compared to the baseline configuration with no fan in place. This contributed to the reduction of the overall swirl angle unsteadiness across the main flow distortion frequencies. This research presents a notable advance in unsteady fan-intake interaction characterisation. The work shows that high-resolution optical measurements offer notably better understanding of these complex aerodynamic interactions and have the potential to be part of larger scale, industrial testing programmes for future product development and certification.
期刊介绍:
Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.