Anticoagulation colloidal microrobots based on heparin-mimicking polymers

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Huanhuan Wang , Huaguang Wang , Xiaoli Liu , Zexin Zhang
{"title":"Anticoagulation colloidal microrobots based on heparin-mimicking polymers","authors":"Huanhuan Wang ,&nbsp;Huaguang Wang ,&nbsp;Xiaoli Liu ,&nbsp;Zexin Zhang","doi":"10.1016/j.jcis.2025.137345","DOIUrl":null,"url":null,"abstract":"<div><div>Coagulation within blood vessels is a major cause of cardiovascular disease and global mortality, highlighting the urgent need for effective anticoagulant strategies. In this study, we introduce a dynamic and highly efficient anticoagulant platform, achieved through the fabrication of a novel colloidal microrobot with unique functional properties. The microrobot is a Janus colloidal sphere with one hemisphere coated with heparin-mimicking polymers and the other with gold. This structure endows the microrobot with self-propulsion capabilities, powered by biocompatible near-infrared (NIR) irradiation, without the need for chemical fuel. The heparin-mimicking polymers not only prevent blood clotting but also promote endothelial cell growth while inhibiting the proliferation of smooth muscle cells. Additionally, the self-propulsion feature allows the microrobot to travel long distances within blood vessels and precisely target sites for anticoagulation. Our work validates an approach for the production of biofunctionalized microrobots, which introduces a novel avenue for anticoagulation application through the development of innovative biofunctionalized colloidal devices.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"691 ","pages":"Article 137345"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725007362","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Coagulation within blood vessels is a major cause of cardiovascular disease and global mortality, highlighting the urgent need for effective anticoagulant strategies. In this study, we introduce a dynamic and highly efficient anticoagulant platform, achieved through the fabrication of a novel colloidal microrobot with unique functional properties. The microrobot is a Janus colloidal sphere with one hemisphere coated with heparin-mimicking polymers and the other with gold. This structure endows the microrobot with self-propulsion capabilities, powered by biocompatible near-infrared (NIR) irradiation, without the need for chemical fuel. The heparin-mimicking polymers not only prevent blood clotting but also promote endothelial cell growth while inhibiting the proliferation of smooth muscle cells. Additionally, the self-propulsion feature allows the microrobot to travel long distances within blood vessels and precisely target sites for anticoagulation. Our work validates an approach for the production of biofunctionalized microrobots, which introduces a novel avenue for anticoagulation application through the development of innovative biofunctionalized colloidal devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信