Red-emitting carbon dots for fabrication of high-quality white LEDs with a color rendering index of 97

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Fanghao Wang, Kexin Wang, Ruifang Guan, Hao Zhang
{"title":"Red-emitting carbon dots for fabrication of high-quality white LEDs with a color rendering index of 97","authors":"Fanghao Wang,&nbsp;Kexin Wang,&nbsp;Ruifang Guan,&nbsp;Hao Zhang","doi":"10.1016/j.jcis.2025.137416","DOIUrl":null,"url":null,"abstract":"<div><div>Red-emitting carbon dots (R-CDs), a novel class of environmentally benign, non-toxic, and pollution-free nanomaterials, have garnered considerable attention in the field of solid-state white light-emitting diodes (WLEDs) owing to their exceptional optical properties. Herein, we synthesized R-CDs-1 with a 671 nm emission using a simple solvent thermal method employing pyromellitic acid and 1,8-diaminonaphthalene as precursors. Structural characterization and density functional theory (DFT) simulations were employed to demonstrate that the reduction in the bandgap due to structural changes leads to a redshift in the emission spectrum of R-CDs-1. By blending R-CDs-1 with commercial phosphors, high-quality WLEDs were successfully fabricated, achieving a high color rendering index (CRI) of 97, approaching the highest reported values to date. Compared to other works, the prepared WLED exhibited a color temperature closer to natural light, offering superior performance for practical illumination. This work significantly contributes to elucidating the red emission mechanism of carbon dots and advances the application of R-CDs in the development of environmentally friendly, non-toxic, high-quality white light illumination devices.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"691 ","pages":"Article 137416"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008070","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Red-emitting carbon dots (R-CDs), a novel class of environmentally benign, non-toxic, and pollution-free nanomaterials, have garnered considerable attention in the field of solid-state white light-emitting diodes (WLEDs) owing to their exceptional optical properties. Herein, we synthesized R-CDs-1 with a 671 nm emission using a simple solvent thermal method employing pyromellitic acid and 1,8-diaminonaphthalene as precursors. Structural characterization and density functional theory (DFT) simulations were employed to demonstrate that the reduction in the bandgap due to structural changes leads to a redshift in the emission spectrum of R-CDs-1. By blending R-CDs-1 with commercial phosphors, high-quality WLEDs were successfully fabricated, achieving a high color rendering index (CRI) of 97, approaching the highest reported values to date. Compared to other works, the prepared WLED exhibited a color temperature closer to natural light, offering superior performance for practical illumination. This work significantly contributes to elucidating the red emission mechanism of carbon dots and advances the application of R-CDs in the development of environmentally friendly, non-toxic, high-quality white light illumination devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信