In situ engineering of a glutathione-derived hydrophobic layer for durable and dendrite-free Zn anodes

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Mengxi Bai, Qiufen Li, Xiang Wang, Jiashuai Li, Xiaoyan Lin, Siyuan Shao, Dongze Li, Ziqi Wang
{"title":"In situ engineering of a glutathione-derived hydrophobic layer for durable and dendrite-free Zn anodes","authors":"Mengxi Bai,&nbsp;Qiufen Li,&nbsp;Xiang Wang,&nbsp;Jiashuai Li,&nbsp;Xiaoyan Lin,&nbsp;Siyuan Shao,&nbsp;Dongze Li,&nbsp;Ziqi Wang","doi":"10.1016/j.jcis.2025.137430","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous Zn-ion batteries (AZIBs) are gaining increasing attention for large-scale energy storage due to their cost-effectiveness, safety, and high volumetric energy density. However, their practical application is still hindered by challenges such as uncontrolled growth of Zn dendrites and unwanted side reactions. In this study, we introduce an interfacial engineering strategy by applying a glutathione (GSH) functional layer on the surface of the Zn anode (GSH@Zn). The GSH layer not only mitigates corrosion by increasing the hydrophobicity of Zn anodes but also guides uniform Zn deposition. Moreover, the native oxides on Zn anodes are etched by glutathione, resulting in an increased electrochemical active area and reduced interfacial impedance, which improves reaction kinetics. Therefore, the GSH@Zn anode demonstrates stable, long-term plating/stripping cycling, operating dendrite-free for 4500 h at 1 mA cm<sup>−2</sup>, significantly outperforming bare Zn anodes, which short-circuit after only 130 h. When paired with a vanadium-based cathode, the full cell shows excellent cycling stability and rate capability, retaining 86 % of its capacity after 2000 cycles and releasing 60 % of its capacity at 4 A g<sup>−1</sup>. This work offers an effective strategy to enhance the stability and reversibility of Zn anodes in aqueous electrolytes, laying the groundwork for the development of durable, high-performance Zn-based energy storage systems.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"691 ","pages":"Article 137430"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008215","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn-ion batteries (AZIBs) are gaining increasing attention for large-scale energy storage due to their cost-effectiveness, safety, and high volumetric energy density. However, their practical application is still hindered by challenges such as uncontrolled growth of Zn dendrites and unwanted side reactions. In this study, we introduce an interfacial engineering strategy by applying a glutathione (GSH) functional layer on the surface of the Zn anode (GSH@Zn). The GSH layer not only mitigates corrosion by increasing the hydrophobicity of Zn anodes but also guides uniform Zn deposition. Moreover, the native oxides on Zn anodes are etched by glutathione, resulting in an increased electrochemical active area and reduced interfacial impedance, which improves reaction kinetics. Therefore, the GSH@Zn anode demonstrates stable, long-term plating/stripping cycling, operating dendrite-free for 4500 h at 1 mA cm−2, significantly outperforming bare Zn anodes, which short-circuit after only 130 h. When paired with a vanadium-based cathode, the full cell shows excellent cycling stability and rate capability, retaining 86 % of its capacity after 2000 cycles and releasing 60 % of its capacity at 4 A g−1. This work offers an effective strategy to enhance the stability and reversibility of Zn anodes in aqueous electrolytes, laying the groundwork for the development of durable, high-performance Zn-based energy storage systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信