Frictional contact between solids: A fully Eulerian phase-field approach

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Flavio Lorez, Mohit Pundir
{"title":"Frictional contact between solids: A fully Eulerian phase-field approach","authors":"Flavio Lorez,&nbsp;Mohit Pundir","doi":"10.1016/j.cma.2025.117929","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements have demonstrated that fully Eulerian methods can effectively model frictionless contact between deformable solids. Unlike traditional Lagrangian approaches, which require contact detection and resolution algorithms, the Eulerian framework utilizes a single, fixed spatial mesh combined with a diffuse interface phase-field approach, simplifying contact resolution significantly. Moreover, the Eulerian method is well-suited for developing a unified framework to handle multiphysical systems involving growing bodies that interact with a constraining medium. In this work, we extend our previous methodology to incorporate frictional contact. By leveraging the intersection of the phase fields of multiple bodies, we define normal and tangential penalty force fields, which are incorporated into the linear momentum equations to capture frictional interactions. This formulation allows independent motion of each body using distinct velocity fields, coupled solely through interfacial forces arising from contact and friction. We thoroughly validate the proposed approach through several numerical examples. The method is shown to handle large sliding effortlessly, accurately capture the stick–slip transition, and preserve history-dependent energy dissipation, offering a solution for modeling frictional contact in Eulerian models.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"440 ","pages":"Article 117929"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525002014","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements have demonstrated that fully Eulerian methods can effectively model frictionless contact between deformable solids. Unlike traditional Lagrangian approaches, which require contact detection and resolution algorithms, the Eulerian framework utilizes a single, fixed spatial mesh combined with a diffuse interface phase-field approach, simplifying contact resolution significantly. Moreover, the Eulerian method is well-suited for developing a unified framework to handle multiphysical systems involving growing bodies that interact with a constraining medium. In this work, we extend our previous methodology to incorporate frictional contact. By leveraging the intersection of the phase fields of multiple bodies, we define normal and tangential penalty force fields, which are incorporated into the linear momentum equations to capture frictional interactions. This formulation allows independent motion of each body using distinct velocity fields, coupled solely through interfacial forces arising from contact and friction. We thoroughly validate the proposed approach through several numerical examples. The method is shown to handle large sliding effortlessly, accurately capture the stick–slip transition, and preserve history-dependent energy dissipation, offering a solution for modeling frictional contact in Eulerian models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信