Attention head purification: A new perspective to harness CLIP for domain generalization

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yingfan Wang, Guoliang Kang
{"title":"Attention head purification: A new perspective to harness CLIP for domain generalization","authors":"Yingfan Wang,&nbsp;Guoliang Kang","doi":"10.1016/j.imavis.2025.105511","DOIUrl":null,"url":null,"abstract":"<div><div>Domain Generalization (DG) aims to learn a model from multiple source domains to achieve satisfactory performance on unseen target domains. Recent works introduce CLIP to DG tasks due to its superior image-text alignment and zeros-shot performance. Previous methods either utilize full fine-tuning or prompt-learning paradigms to harness CLIP for DG tasks. Those works focus on avoiding catastrophic forgetting of the original knowledge encoded in CLIP but ignore that the knowledge encoded in CLIP in nature may contain domain-specific cues that constrain its domain generalization performance. In this paper, we propose a new perspective to harness CLIP for DG, <em>i.e.,</em> attention head purification. We observe that different attention heads may encode different properties of an image and selecting heads appropriately may yield remarkable performance improvement across domains. Based on such observations, we purify the attention heads of CLIP from two levels, including <em>task-level purification</em> and <em>domain-level purification</em>. For task-level purification, we design head-aware LoRA to make each head more adapted to the task we considered. For domain-level purification, we perform head selection via a simple gating strategy. We utilize MMD loss to encourage masked head features to be more domain-invariant to emphasize more generalizable properties/heads. During training, we jointly perform task-level purification and domain-level purification. We conduct experiments on various representative DG benchmarks. Though simple, extensive experiments demonstrate that our method performs favorably against previous state-of-the-arts.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"157 ","pages":"Article 105511"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026288562500099X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Domain Generalization (DG) aims to learn a model from multiple source domains to achieve satisfactory performance on unseen target domains. Recent works introduce CLIP to DG tasks due to its superior image-text alignment and zeros-shot performance. Previous methods either utilize full fine-tuning or prompt-learning paradigms to harness CLIP for DG tasks. Those works focus on avoiding catastrophic forgetting of the original knowledge encoded in CLIP but ignore that the knowledge encoded in CLIP in nature may contain domain-specific cues that constrain its domain generalization performance. In this paper, we propose a new perspective to harness CLIP for DG, i.e., attention head purification. We observe that different attention heads may encode different properties of an image and selecting heads appropriately may yield remarkable performance improvement across domains. Based on such observations, we purify the attention heads of CLIP from two levels, including task-level purification and domain-level purification. For task-level purification, we design head-aware LoRA to make each head more adapted to the task we considered. For domain-level purification, we perform head selection via a simple gating strategy. We utilize MMD loss to encourage masked head features to be more domain-invariant to emphasize more generalizable properties/heads. During training, we jointly perform task-level purification and domain-level purification. We conduct experiments on various representative DG benchmarks. Though simple, extensive experiments demonstrate that our method performs favorably against previous state-of-the-arts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信