{"title":"Stealth sight: A multi perspective approach for camouflaged object detection","authors":"Domnic S., Jayanthan K.S.","doi":"10.1016/j.imavis.2025.105517","DOIUrl":null,"url":null,"abstract":"<div><div>Camouflaged object detection (COD) is a challenging task due to the inherent similarity between objects and their surroundings. This paper introduces <strong>Stealth Sight</strong>, a novel framework integrating multi-view feature fusion and depth-based refinement to enhance segmentation accuracy. Our approach incorporates a pretrained multi-view CLIP encoder and a depth extraction network, facilitating robust feature representation. Additionally, we introduce a cross-attention transformer decoder and a post-training pruning mechanism to improve efficiency. Extensive evaluations on benchmark datasets demonstrate that Stealth Sight outperforms state-of-the-art methods in camouflaged object segmentation. Our method significantly enhances detection in complex environments, making it applicable to medical imaging, security, and wildlife monitoring.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"157 ","pages":"Article 105517"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625001052","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Camouflaged object detection (COD) is a challenging task due to the inherent similarity between objects and their surroundings. This paper introduces Stealth Sight, a novel framework integrating multi-view feature fusion and depth-based refinement to enhance segmentation accuracy. Our approach incorporates a pretrained multi-view CLIP encoder and a depth extraction network, facilitating robust feature representation. Additionally, we introduce a cross-attention transformer decoder and a post-training pruning mechanism to improve efficiency. Extensive evaluations on benchmark datasets demonstrate that Stealth Sight outperforms state-of-the-art methods in camouflaged object segmentation. Our method significantly enhances detection in complex environments, making it applicable to medical imaging, security, and wildlife monitoring.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.