Comprehensive review on 3D point cloud segmentation in plants

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Hongli Song , Weiliang Wen , Sheng Wu , Xinyu Guo
{"title":"Comprehensive review on 3D point cloud segmentation in plants","authors":"Hongli Song ,&nbsp;Weiliang Wen ,&nbsp;Sheng Wu ,&nbsp;Xinyu Guo","doi":"10.1016/j.aiia.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>Segmentation of three-dimensional (3D) point clouds is fundamental in comprehending unstructured structural and morphological data. It plays a critical role in research related to plant phenomics, 3D plant modeling, and functional-structural plant modeling. Although technologies for plant point cloud segmentation (PPCS) have advanced rapidly, there has been a lack of a systematic overview of the development process. This paper presents an overview of the progress made in 3D point cloud segmentation research in plants. It starts by discussing the methods used to acquire point clouds in plants, and analyzes the impact of point cloud resolution and quality on the segmentation task. It then introduces multi-scale point cloud segmentation in plants. The paper summarizes and analyzes traditional methods for PPCS, including the global and local features. This paper discusses the progress of machine learning-based segmentation on plant point clouds through supervised, unsupervised, and integrated approaches. It also summarizes the datasets that for PPCS using deep learning-oriented methods and explains the advantages and disadvantages of deep learning-based methods for projection-based, voxel-based, and point-based approaches respectively. Finally, the development of PPCS is discussed and prospected. Deep learning methods are predicted to become dominant in the field of PPCS, and 3D point cloud segmentation would develop towards more automated with higher resolution and precision.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 2","pages":"Pages 296-315"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Segmentation of three-dimensional (3D) point clouds is fundamental in comprehending unstructured structural and morphological data. It plays a critical role in research related to plant phenomics, 3D plant modeling, and functional-structural plant modeling. Although technologies for plant point cloud segmentation (PPCS) have advanced rapidly, there has been a lack of a systematic overview of the development process. This paper presents an overview of the progress made in 3D point cloud segmentation research in plants. It starts by discussing the methods used to acquire point clouds in plants, and analyzes the impact of point cloud resolution and quality on the segmentation task. It then introduces multi-scale point cloud segmentation in plants. The paper summarizes and analyzes traditional methods for PPCS, including the global and local features. This paper discusses the progress of machine learning-based segmentation on plant point clouds through supervised, unsupervised, and integrated approaches. It also summarizes the datasets that for PPCS using deep learning-oriented methods and explains the advantages and disadvantages of deep learning-based methods for projection-based, voxel-based, and point-based approaches respectively. Finally, the development of PPCS is discussed and prospected. Deep learning methods are predicted to become dominant in the field of PPCS, and 3D point cloud segmentation would develop towards more automated with higher resolution and precision.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信