{"title":"The capillary Minkowski problem","authors":"Xinqun Mei , Guofang Wang , Liangjun Weng","doi":"10.1016/j.aim.2025.110230","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we introduce a capillary Minkowski problem, which asks for the existence of a strictly convex capillary hypersurface <span><math><mi>Σ</mi><mo>⊂</mo><mover><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></mrow><mo>‾</mo></mover></math></span> supported on <span><math><mover><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></mrow><mo>‾</mo></mover></math></span> with a prescribed Gauss-Kronecker curvature on a spherical cap <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>θ</mi></mrow></msub></math></span>. We reduce it to a Monge-Ampère type equation with a Robin boundary value problem and then obtain a necessary and sufficient condition for solving this problem provided <span><math><mi>θ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>. The restriction <span><math><mi>θ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span> comes from the difficult part of the proof, <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-estimation. We manage to prove <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-estimates by using this restriction and leave the problem open if <span><math><mi>θ</mi><mo>></mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. This is a natural Robin boundary version of the classical Minkowski problem.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"469 ","pages":"Article 110230"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001288","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we introduce a capillary Minkowski problem, which asks for the existence of a strictly convex capillary hypersurface supported on with a prescribed Gauss-Kronecker curvature on a spherical cap . We reduce it to a Monge-Ampère type equation with a Robin boundary value problem and then obtain a necessary and sufficient condition for solving this problem provided . The restriction comes from the difficult part of the proof, -estimation. We manage to prove -estimates by using this restriction and leave the problem open if . This is a natural Robin boundary version of the classical Minkowski problem.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.