Mengyao Zheng , Chuanwei Li , Yu Liao , Zhong Long , Jianfeng Gu
{"title":"Hierarchical multiphase microstructure in additively manufactured (CoCrNi)83Al17 multi-principal element alloy with high strength","authors":"Mengyao Zheng , Chuanwei Li , Yu Liao , Zhong Long , Jianfeng Gu","doi":"10.1016/j.scriptamat.2025.116655","DOIUrl":null,"url":null,"abstract":"<div><div>The design of hierarchical microstructure is considered as an effective approach to enhance the mechanical properties of alloys. This study has reported a novel hierarchical multiphase microstructure in an additively manufactured (CoCrNi)<sub>83</sub>Al<sub>17</sub> multi-principal element alloy. The basic cellular unit of this novel structure is composed of a network face-centered cubic phase wrapped around an equiaxed ordered body-centered cubic (B2) phase. Three nano-phases with different compositions, sizes, and orientation relationships with the matrix are further precipitated in the equiaxed B2 phase. This novel hierarchical multiphase microstructure significantly enhances the strength of the alloy and effectively hinders the propagation of microcracks, resulting in a good combination of strength and ductility in the as-built (CoCrNi)<sub>83</sub>Al<sub>17</sub> alloy.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"263 ","pages":"Article 116655"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225001186","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The design of hierarchical microstructure is considered as an effective approach to enhance the mechanical properties of alloys. This study has reported a novel hierarchical multiphase microstructure in an additively manufactured (CoCrNi)83Al17 multi-principal element alloy. The basic cellular unit of this novel structure is composed of a network face-centered cubic phase wrapped around an equiaxed ordered body-centered cubic (B2) phase. Three nano-phases with different compositions, sizes, and orientation relationships with the matrix are further precipitated in the equiaxed B2 phase. This novel hierarchical multiphase microstructure significantly enhances the strength of the alloy and effectively hinders the propagation of microcracks, resulting in a good combination of strength and ductility in the as-built (CoCrNi)83Al17 alloy.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.