Thermodynamic modeling of Mo–Os, W–Os and Mo–Os–W systems

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL
Baogang Liu , Yong Du , Lei Huang , Yafei Pan
{"title":"Thermodynamic modeling of Mo–Os, W–Os and Mo–Os–W systems","authors":"Baogang Liu ,&nbsp;Yong Du ,&nbsp;Lei Huang ,&nbsp;Yafei Pan","doi":"10.1016/j.calphad.2025.102823","DOIUrl":null,"url":null,"abstract":"<div><div>Based on critical evaluation of the literature data, the Mo–Os and W–Os binary systems have been reviewed and assessed by means of the CALPHAD technique. The substitutional solution models are adopted to describe the liquid, bcc (βMo, βW) and hcp (αOs) phases, and the compound energy models with two sublattices are to describe the σ and Mo<sub>3</sub>Os phases. The phase equilibrium data of the Mo–Os and W–Os systems are well produced by the present modeling. Using the obtained thermodynamic parameters of the sub-binary systems, the thermodynamic description has been extended to the Mo–Os–W ternary system, covering the whole composition and temperature ranges. There is no ternary compound in this system. The σ phase forms a continuous solid solution crossing the phase diagram. A set of self-consistent thermodynamic parameters for the Mo–Os–W system is systematically optimized to describe to the bcc, σ and Mo<sub>3</sub>Os phases. Comprehensive comparisons between the calculated and reported phase diagram information show that the reliable information is satisfactorily accounted for by the present modeling. The liquidus projection and reaction scheme of the Mo–Os–W system are also generated by using the present thermodynamic parameters.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"89 ","pages":"Article 102823"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591625000264","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Based on critical evaluation of the literature data, the Mo–Os and W–Os binary systems have been reviewed and assessed by means of the CALPHAD technique. The substitutional solution models are adopted to describe the liquid, bcc (βMo, βW) and hcp (αOs) phases, and the compound energy models with two sublattices are to describe the σ and Mo3Os phases. The phase equilibrium data of the Mo–Os and W–Os systems are well produced by the present modeling. Using the obtained thermodynamic parameters of the sub-binary systems, the thermodynamic description has been extended to the Mo–Os–W ternary system, covering the whole composition and temperature ranges. There is no ternary compound in this system. The σ phase forms a continuous solid solution crossing the phase diagram. A set of self-consistent thermodynamic parameters for the Mo–Os–W system is systematically optimized to describe to the bcc, σ and Mo3Os phases. Comprehensive comparisons between the calculated and reported phase diagram information show that the reliable information is satisfactorily accounted for by the present modeling. The liquidus projection and reaction scheme of the Mo–Os–W system are also generated by using the present thermodynamic parameters.
Mo-Os, W-Os和Mo-Os - w体系的热力学建模
在对文献资料进行批判性评价的基础上,利用CALPHAD技术对Mo-Os和W-Os二元体系进行了回顾和评估。液相、bcc (βMo、βW)和hcp (αOs)相采用替代溶液模型,σ和Mo3Os相采用双亚晶格复合能量模型。通过本模型可以很好地得到Mo-Os和W-Os体系的相平衡数据。利用得到的亚二元体系热力学参数,将热力学描述扩展到Mo-Os-W三元体系,涵盖了整个组成和温度范围。这个体系中没有三元化合物。σ相在相图上形成连续的固溶体。系统地优化了Mo-Os-W体系的自洽热力学参数,以描述bcc、σ和Mo3Os相。计算的相图信息与报告的相图信息的综合比较表明,本文的模型充分考虑了可靠的信息。利用现有热力学参数,导出了Mo-Os-W体系的液相投影和反应图式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信