Efficient one-stage detection of shrimp larvae in complex aquaculture scenarios

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Guoxu Zhang , Tianyi Liao , Yingyi Chen , Ping Zhong , Zhencai Shen , Daoliang Li
{"title":"Efficient one-stage detection of shrimp larvae in complex aquaculture scenarios","authors":"Guoxu Zhang ,&nbsp;Tianyi Liao ,&nbsp;Yingyi Chen ,&nbsp;Ping Zhong ,&nbsp;Zhencai Shen ,&nbsp;Daoliang Li","doi":"10.1016/j.aiia.2025.01.009","DOIUrl":null,"url":null,"abstract":"<div><div>The swift evolution of deep learning has greatly benefited the field of intensive aquaculture. Specifically, deep learning-based shrimp larvae detection has offered important technical assistance for counting shrimp larvae and recognizing abnormal behaviors. Firstly, the transparent bodies and small sizes of shrimp larvae, combined with complex scenarios due to variations in light intensity and water turbidity, make it challenging for current detection methods to achieve high accuracy. Secondly, deep learning-based object detection demands substantial computing power and storage space, which restricts its application on edge devices. This paper proposes an efficient one-stage shrimp larvae detection method, FAMDet, specifically designed for complex scenarios in intensive aquaculture. Firstly, different from the ordinary detection methods, it exploits an efficient FasterNet backbone, constructed with partial convolution, to extract effective multi-scale shrimp larvae features. Meanwhile, we construct an adaptively bi-directional fusion neck to integrate high-level semantic information and low-level detail information of shrimp larvae in a matter that sufficiently merges features and further mitigates noise interference. Finally, a decoupled detection head equipped with MPDIoU is used for precise bounding box regression of shrimp larvae. We collected images of shrimp larvae from multiple scenarios and labeled 108,365 targets for experiments. Compared with the ordinary detection methods (Faster RCNN, SSD, RetinaNet, CenterNet, FCOS, DETR, and YOLOX_s), FAMDet has obtained considerable advantages in accuracy, speed, and complexity. Compared with the outstanding one-stage method YOLOv8s, it has improved accuracy while reducing 57 % parameters, 37 % FLOPs, 22 % inference latency per image on CPU, and 56 % storage overhead. Furthermore, FAMDet has still outperformed multiple lightweight methods (EfficientDet, RT-DETR, GhostNetV2, EfficientFormerV2, EfficientViT, and MobileNetV4). In addition, we conducted experiments on the public dataset (VOC 07 + 12) to further verify the effectiveness of FAMDet. Consequently, the proposed method can effectively alleviate the limitations faced by resource-constrained devices and achieve superior shrimp larvae detection results.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 2","pages":"Pages 338-349"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The swift evolution of deep learning has greatly benefited the field of intensive aquaculture. Specifically, deep learning-based shrimp larvae detection has offered important technical assistance for counting shrimp larvae and recognizing abnormal behaviors. Firstly, the transparent bodies and small sizes of shrimp larvae, combined with complex scenarios due to variations in light intensity and water turbidity, make it challenging for current detection methods to achieve high accuracy. Secondly, deep learning-based object detection demands substantial computing power and storage space, which restricts its application on edge devices. This paper proposes an efficient one-stage shrimp larvae detection method, FAMDet, specifically designed for complex scenarios in intensive aquaculture. Firstly, different from the ordinary detection methods, it exploits an efficient FasterNet backbone, constructed with partial convolution, to extract effective multi-scale shrimp larvae features. Meanwhile, we construct an adaptively bi-directional fusion neck to integrate high-level semantic information and low-level detail information of shrimp larvae in a matter that sufficiently merges features and further mitigates noise interference. Finally, a decoupled detection head equipped with MPDIoU is used for precise bounding box regression of shrimp larvae. We collected images of shrimp larvae from multiple scenarios and labeled 108,365 targets for experiments. Compared with the ordinary detection methods (Faster RCNN, SSD, RetinaNet, CenterNet, FCOS, DETR, and YOLOX_s), FAMDet has obtained considerable advantages in accuracy, speed, and complexity. Compared with the outstanding one-stage method YOLOv8s, it has improved accuracy while reducing 57 % parameters, 37 % FLOPs, 22 % inference latency per image on CPU, and 56 % storage overhead. Furthermore, FAMDet has still outperformed multiple lightweight methods (EfficientDet, RT-DETR, GhostNetV2, EfficientFormerV2, EfficientViT, and MobileNetV4). In addition, we conducted experiments on the public dataset (VOC 07 + 12) to further verify the effectiveness of FAMDet. Consequently, the proposed method can effectively alleviate the limitations faced by resource-constrained devices and achieve superior shrimp larvae detection results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信