Geranyl hydroquinone alleviates rheumatoid arthritis-associated pain by suppressing neutrophil accumulation, N1 polarization and ROS production in mice
Sen Huang , Yuxin Xie , Zhaochun Zhan , Fengdong Liu , Peiyang Liu , Fei Xu , Tingting Xu , Zhenning Fang , Zhiqiang Chen , Qingjian Han , Ligang Jie , Rougang Xie , Hongfei Zhang , Shiyuan Xu , Yiwen Zhang , Kai Mo , Xin Luo
{"title":"Geranyl hydroquinone alleviates rheumatoid arthritis-associated pain by suppressing neutrophil accumulation, N1 polarization and ROS production in mice","authors":"Sen Huang , Yuxin Xie , Zhaochun Zhan , Fengdong Liu , Peiyang Liu , Fei Xu , Tingting Xu , Zhenning Fang , Zhiqiang Chen , Qingjian Han , Ligang Jie , Rougang Xie , Hongfei Zhang , Shiyuan Xu , Yiwen Zhang , Kai Mo , Xin Luo","doi":"10.1016/j.redox.2025.103603","DOIUrl":null,"url":null,"abstract":"<div><div>Pain hypersensitivity is a hallmark of rheumatoid arthritis (RA); however, the underlying mechanisms and effective therapies remain largely undefined. Emerging studies suggest that neutrophils play a significant role in the pathology of RA, yet their involvement in RA-associated pain is still unclear. The present study investigates whether neutrophil activity contributes to pain pathogenesis in RA. Our flow cytometry analysis reveals that the accumulation and N1 polarization (indicated by the ratio of CD45<sup>+</sup>CD66b<sup>+</sup>CD95<sup>+</sup> subset) of neutrophils occur in synovial fluid samples from RA patients, positively correlating with pain scores. In the collagen-induced rheumatoid arthritis (CIA) model, mice demonstrate neutrophil accumulation, N1 polarization (indicated by the ratio of CD45<sup>+</sup>Ly-6G<sup>+</sup>CD95<sup>+</sup> subset), and reactive oxygen species (ROS) production in affected paw tissues. Geranyl hydroquinone (GHQ), a natural meroterpenoid with antioxidative properties, reverses N1 polarization and ROS production in synovial neutrophils from RA patients <em>in vitro</em>. Moreover, a 10-day oral administration of GHQ alleviates pain hypersensitivity and reduces neutrophil accumulation, N1 polarization, and ROS production in CIA mice. Notably, GHQ treatment reverses TNF-α-evoked ROS production in neutrophils <em>in vitro</em> through downregulating gene expression associated with the ROS pathway. Further, liquid chromatography-tandem mass spectrometry and biochemical analyses indicate that GHQ binds to microsomal glutathione S-transferase 3 (MGST3) in neutrophils. <em>In vitro</em> and <em>in vivo</em> evidence demonstrates that the RA-specific analgesic and antioxidative effects of GHQ require MGST3. Lastly, GHQ administration exhibits superior therapeutic effects compared to methotrexate, a first-line disease-modifying antirheumatic drug, in CIA mice. Collectively, our findings indicate that neutrophil accumulation, N1 polarization and ROS production contribute to RA-associated pain, suggesting that targeting these pathways, such as with GHQ, could be a viable strategy for RA treatment.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"82 ","pages":"Article 103603"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725001168","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pain hypersensitivity is a hallmark of rheumatoid arthritis (RA); however, the underlying mechanisms and effective therapies remain largely undefined. Emerging studies suggest that neutrophils play a significant role in the pathology of RA, yet their involvement in RA-associated pain is still unclear. The present study investigates whether neutrophil activity contributes to pain pathogenesis in RA. Our flow cytometry analysis reveals that the accumulation and N1 polarization (indicated by the ratio of CD45+CD66b+CD95+ subset) of neutrophils occur in synovial fluid samples from RA patients, positively correlating with pain scores. In the collagen-induced rheumatoid arthritis (CIA) model, mice demonstrate neutrophil accumulation, N1 polarization (indicated by the ratio of CD45+Ly-6G+CD95+ subset), and reactive oxygen species (ROS) production in affected paw tissues. Geranyl hydroquinone (GHQ), a natural meroterpenoid with antioxidative properties, reverses N1 polarization and ROS production in synovial neutrophils from RA patients in vitro. Moreover, a 10-day oral administration of GHQ alleviates pain hypersensitivity and reduces neutrophil accumulation, N1 polarization, and ROS production in CIA mice. Notably, GHQ treatment reverses TNF-α-evoked ROS production in neutrophils in vitro through downregulating gene expression associated with the ROS pathway. Further, liquid chromatography-tandem mass spectrometry and biochemical analyses indicate that GHQ binds to microsomal glutathione S-transferase 3 (MGST3) in neutrophils. In vitro and in vivo evidence demonstrates that the RA-specific analgesic and antioxidative effects of GHQ require MGST3. Lastly, GHQ administration exhibits superior therapeutic effects compared to methotrexate, a first-line disease-modifying antirheumatic drug, in CIA mice. Collectively, our findings indicate that neutrophil accumulation, N1 polarization and ROS production contribute to RA-associated pain, suggesting that targeting these pathways, such as with GHQ, could be a viable strategy for RA treatment.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.