Automatic colorectal cancer detection using machine learning and deep learning based on feature selection in histopathological images

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Hawkar Haji Said Junaid , Fatemeh Daneshfar , Mahmud Abdulla Mohammad
{"title":"Automatic colorectal cancer detection using machine learning and deep learning based on feature selection in histopathological images","authors":"Hawkar Haji Said Junaid ,&nbsp;Fatemeh Daneshfar ,&nbsp;Mahmud Abdulla Mohammad","doi":"10.1016/j.bspc.2025.107866","DOIUrl":null,"url":null,"abstract":"<div><div>Colorectal cancer (CRC) accounts for 10% of global cancer cases and is the third most prevalent type, with a significant increase anticipated in the coming years. This trend underscores the need for precise diagnostics, as effective treatment depends on accurate histopathological analysis of hematoxylin and eosin (H&amp;E) stained biopsies. However, manual evaluation of biopsies is labor-intensive and prone to errors due to staining variations and inconsistencies, complicating the work of pathologists. To address these challenges, advanced automated image analysis, incorporating deep learning (DL) and machine learning (ML) techniques, has substantially improved computer-aided diagnosis systems. This paper proposes a composite model that combines DL and ML to enhance the accuracy of CRC diagnosis. The model aims to increase diagnostic precision, reduce computational complexity, and prevent overfitting for reliable performance. It employs a cascaded design involving feature extraction with MobileNetV2 and DenseNet121 using transfer learning (TL), dataset balancing via the Synthetic Minority Over-sampling Technique (SMOTE), key feature selection through a Chi-square test, and classification by ML algorithms with hyperparameter tuning. The proposed model demonstrates superior performance on the Extended Bioimaging Histopathological Image Segmentation (EBHI-Seg) and multi-class datasets, achieving high accuracy, precision, recall, F1-score, and area under the curve (AUC), demonstrating that the suggested model is superior to other methods already in use<span><span><sup>1</sup></span></span>.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"107 ","pages":"Article 107866"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425003775","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) accounts for 10% of global cancer cases and is the third most prevalent type, with a significant increase anticipated in the coming years. This trend underscores the need for precise diagnostics, as effective treatment depends on accurate histopathological analysis of hematoxylin and eosin (H&E) stained biopsies. However, manual evaluation of biopsies is labor-intensive and prone to errors due to staining variations and inconsistencies, complicating the work of pathologists. To address these challenges, advanced automated image analysis, incorporating deep learning (DL) and machine learning (ML) techniques, has substantially improved computer-aided diagnosis systems. This paper proposes a composite model that combines DL and ML to enhance the accuracy of CRC diagnosis. The model aims to increase diagnostic precision, reduce computational complexity, and prevent overfitting for reliable performance. It employs a cascaded design involving feature extraction with MobileNetV2 and DenseNet121 using transfer learning (TL), dataset balancing via the Synthetic Minority Over-sampling Technique (SMOTE), key feature selection through a Chi-square test, and classification by ML algorithms with hyperparameter tuning. The proposed model demonstrates superior performance on the Extended Bioimaging Histopathological Image Segmentation (EBHI-Seg) and multi-class datasets, achieving high accuracy, precision, recall, F1-score, and area under the curve (AUC), demonstrating that the suggested model is superior to other methods already in use1.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信