{"title":"Advanced deep learning and large language models: Comprehensive insights for cancer detection","authors":"Yassine Habchi , Hamza Kheddar , Yassine Himeur , Adel Belouchrani , Erchin Serpedin , Fouad Khelifi , Muhammad E.H. Chowdhury","doi":"10.1016/j.imavis.2025.105495","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the rapid advancement of machine learning (ML), particularly deep learning (DL), has revolutionized various fields, with healthcare being one of the most notable beneficiaries. DL has demonstrated exceptional capabilities in addressing complex medical challenges, including the early detection and diagnosis of cancer. Its superior performance, surpassing both traditional ML methods and human accuracy, has made it a critical tool in identifying and diagnosing diseases such as cancer. Despite the availability of numerous reviews on DL applications in healthcare, a comprehensive and detailed understanding of DL’s role in cancer detection remains lacking. Most existing studies focus on specific aspects of DL, leaving significant gaps in the broader knowledge base. This paper aims to bridge these gaps by offering a thorough review of advanced DL techniques, namely transfer learning (TL), reinforcement learning (RL), federated learning (FL), Transformers, and large language models (LLMs). These cutting-edge approaches are pushing the boundaries of cancer detection by enhancing model accuracy, addressing data scarcity, and enabling decentralized learning across institutions while maintaining data privacy. TL enables the adaptation of pre-trained models to new cancer datasets, significantly improving performance with limited labeled data. RL is emerging as a promising method for optimizing diagnostic pathways and treatment strategies, while FL ensures collaborative model development without sharing sensitive patient data. Furthermore, Transformers and LLMs, traditionally utilized in natural language processing (NLP), are now being applied to medical data for enhanced interpretability and context-based predictions. In addition, this review explores the efficiency of the aforementioned techniques in cancer diagnosis, it addresses key challenges such as data imbalance, and proposes potential solutions. It aims to be a valuable resource for researchers and practitioners, offering insights into current trends and guiding future research in the application of advanced DL techniques for cancer detection.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"157 ","pages":"Article 105495"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000836","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the rapid advancement of machine learning (ML), particularly deep learning (DL), has revolutionized various fields, with healthcare being one of the most notable beneficiaries. DL has demonstrated exceptional capabilities in addressing complex medical challenges, including the early detection and diagnosis of cancer. Its superior performance, surpassing both traditional ML methods and human accuracy, has made it a critical tool in identifying and diagnosing diseases such as cancer. Despite the availability of numerous reviews on DL applications in healthcare, a comprehensive and detailed understanding of DL’s role in cancer detection remains lacking. Most existing studies focus on specific aspects of DL, leaving significant gaps in the broader knowledge base. This paper aims to bridge these gaps by offering a thorough review of advanced DL techniques, namely transfer learning (TL), reinforcement learning (RL), federated learning (FL), Transformers, and large language models (LLMs). These cutting-edge approaches are pushing the boundaries of cancer detection by enhancing model accuracy, addressing data scarcity, and enabling decentralized learning across institutions while maintaining data privacy. TL enables the adaptation of pre-trained models to new cancer datasets, significantly improving performance with limited labeled data. RL is emerging as a promising method for optimizing diagnostic pathways and treatment strategies, while FL ensures collaborative model development without sharing sensitive patient data. Furthermore, Transformers and LLMs, traditionally utilized in natural language processing (NLP), are now being applied to medical data for enhanced interpretability and context-based predictions. In addition, this review explores the efficiency of the aforementioned techniques in cancer diagnosis, it addresses key challenges such as data imbalance, and proposes potential solutions. It aims to be a valuable resource for researchers and practitioners, offering insights into current trends and guiding future research in the application of advanced DL techniques for cancer detection.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.