Tirtho S. Saha , Alexander Heinlein , Cordula Reisch
{"title":"Towards Model Discovery Using Domain Decomposition and PINNs","authors":"Tirtho S. Saha , Alexander Heinlein , Cordula Reisch","doi":"10.1016/j.ifacol.2025.03.008","DOIUrl":null,"url":null,"abstract":"<div><div>We enhance machine learning algorithms for learning model parameters in complex systems represented by differential equations with domain decomposition methods. The study evaluates the performance of two approaches, namely (vanilla) Physics-Informed Neural Networks (PINNs) and Finite Basis Physics-Informed Neural Networks (FBPINNs), in learning the dynamics of test models with a quasi-stationary longtime behavior. We test the approaches for data sets in different dynamical regions and with varying noise level. As results, the FBPINN approach better captures the overall dynamical behavior compared to the vanilla PINN approach, even in cases with data only from a time domain with quasi-stationary dynamics.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 1","pages":"Pages 37-42"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325002253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
We enhance machine learning algorithms for learning model parameters in complex systems represented by differential equations with domain decomposition methods. The study evaluates the performance of two approaches, namely (vanilla) Physics-Informed Neural Networks (PINNs) and Finite Basis Physics-Informed Neural Networks (FBPINNs), in learning the dynamics of test models with a quasi-stationary longtime behavior. We test the approaches for data sets in different dynamical regions and with varying noise level. As results, the FBPINN approach better captures the overall dynamical behavior compared to the vanilla PINN approach, even in cases with data only from a time domain with quasi-stationary dynamics.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.