Zhiwei Wang , Lingchong Gao , Ziyun Kan , Michael Kleeberger , Johannes Fottner
{"title":"Dynamic Modeling and Numerical Calculation of a Hydraulic Actuated Flexible Knuckle Boom Crane","authors":"Zhiwei Wang , Lingchong Gao , Ziyun Kan , Michael Kleeberger , Johannes Fottner","doi":"10.1016/j.ifacol.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>Due to its slender boom structure, the knuckle boom crane often undergoes significant elastic deformation when transporting heavy payloads in its fully extended configuration, adversely affecting operational efficiency and safety. Therefore, analyzing the crane’s strong geometrical nonlinear dynamic behavior is crucial for engineering applications. This paper presents a dynamic modeling and numerical integration method for a rigid-flexible coupling knuckle boom crane, which is subjected to structural constraints and actuated by hydraulic cylinders. In terms of dynamic modeling, the dynamic equations of the crane’s flexible boom are derived based on the geometrically exact Euler-Bernoulli beam theory while integrating the crane’s rigid multibody dynamic equations, structural constraint equations, and hydraulic state equations. This approach results in a comprehensive dynamic model of the crane. For numerical integration, we adopt the Newmark method and the implicit single-step trapezoidal discretization scheme to establish the discrete formulation for the mechanical structure and hydraulics, and derive the Jacobian matrix required for the Newton-Raphson iteration. Numerical simulations verify the effectiveness of the integration algorithm through a comparative analysis with the results obtained from ordinary differential equation solvers, and a dynamic analysis of a representative case study was subsequently conducted. This work contributes to the optimization of crane structures and the design of control systems.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 1","pages":"Pages 1-6"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325002198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its slender boom structure, the knuckle boom crane often undergoes significant elastic deformation when transporting heavy payloads in its fully extended configuration, adversely affecting operational efficiency and safety. Therefore, analyzing the crane’s strong geometrical nonlinear dynamic behavior is crucial for engineering applications. This paper presents a dynamic modeling and numerical integration method for a rigid-flexible coupling knuckle boom crane, which is subjected to structural constraints and actuated by hydraulic cylinders. In terms of dynamic modeling, the dynamic equations of the crane’s flexible boom are derived based on the geometrically exact Euler-Bernoulli beam theory while integrating the crane’s rigid multibody dynamic equations, structural constraint equations, and hydraulic state equations. This approach results in a comprehensive dynamic model of the crane. For numerical integration, we adopt the Newmark method and the implicit single-step trapezoidal discretization scheme to establish the discrete formulation for the mechanical structure and hydraulics, and derive the Jacobian matrix required for the Newton-Raphson iteration. Numerical simulations verify the effectiveness of the integration algorithm through a comparative analysis with the results obtained from ordinary differential equation solvers, and a dynamic analysis of a representative case study was subsequently conducted. This work contributes to the optimization of crane structures and the design of control systems.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.