Andreas Körner , Daniel Pasterk , Florian Stadler , Christine Zeh
{"title":"Insight-driven Optimization to Improve Dynamic Scheduling for Flexible Job-shops","authors":"Andreas Körner , Daniel Pasterk , Florian Stadler , Christine Zeh","doi":"10.1016/j.ifacol.2025.03.077","DOIUrl":null,"url":null,"abstract":"<div><div>Planning and scheduling problems can be challenging to manage, and the related optimization problem is often too complex to solve in real-time. The typical approach to address this issue is to apply heuristic policies, which perform reasonably well. Machine learning algorithms can be used to replace heuristics, but this raises the issue of obtaining unexplainable solutions. The application of reinforcement learning with policy extraction technique can help produce explainable results to improve the dynamic system of the planning and scheduling problem. As a case study, we use the simulation model of a dynamic flexible job shop to learn a solution strategy for the associated scheduling problem with deep reinforcement learning. Based on this, we were able to extract a decision tree that is superior to classical dispatching heuristics for a wide variety of scenarios. It also provides valuable information about the criteria for decision-making. Here we offer a new approach to analyzing and solving these problems - leading to an improvement in dynamic systems.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 1","pages":"Pages 451-456"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325002940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Planning and scheduling problems can be challenging to manage, and the related optimization problem is often too complex to solve in real-time. The typical approach to address this issue is to apply heuristic policies, which perform reasonably well. Machine learning algorithms can be used to replace heuristics, but this raises the issue of obtaining unexplainable solutions. The application of reinforcement learning with policy extraction technique can help produce explainable results to improve the dynamic system of the planning and scheduling problem. As a case study, we use the simulation model of a dynamic flexible job shop to learn a solution strategy for the associated scheduling problem with deep reinforcement learning. Based on this, we were able to extract a decision tree that is superior to classical dispatching heuristics for a wide variety of scenarios. It also provides valuable information about the criteria for decision-making. Here we offer a new approach to analyzing and solving these problems - leading to an improvement in dynamic systems.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.