Insight-driven Optimization to Improve Dynamic Scheduling for Flexible Job-shops

Q3 Engineering
Andreas Körner , Daniel Pasterk , Florian Stadler , Christine Zeh
{"title":"Insight-driven Optimization to Improve Dynamic Scheduling for Flexible Job-shops","authors":"Andreas Körner ,&nbsp;Daniel Pasterk ,&nbsp;Florian Stadler ,&nbsp;Christine Zeh","doi":"10.1016/j.ifacol.2025.03.077","DOIUrl":null,"url":null,"abstract":"<div><div>Planning and scheduling problems can be challenging to manage, and the related optimization problem is often too complex to solve in real-time. The typical approach to address this issue is to apply heuristic policies, which perform reasonably well. Machine learning algorithms can be used to replace heuristics, but this raises the issue of obtaining unexplainable solutions. The application of reinforcement learning with policy extraction technique can help produce explainable results to improve the dynamic system of the planning and scheduling problem. As a case study, we use the simulation model of a dynamic flexible job shop to learn a solution strategy for the associated scheduling problem with deep reinforcement learning. Based on this, we were able to extract a decision tree that is superior to classical dispatching heuristics for a wide variety of scenarios. It also provides valuable information about the criteria for decision-making. Here we offer a new approach to analyzing and solving these problems - leading to an improvement in dynamic systems.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 1","pages":"Pages 451-456"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325002940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Planning and scheduling problems can be challenging to manage, and the related optimization problem is often too complex to solve in real-time. The typical approach to address this issue is to apply heuristic policies, which perform reasonably well. Machine learning algorithms can be used to replace heuristics, but this raises the issue of obtaining unexplainable solutions. The application of reinforcement learning with policy extraction technique can help produce explainable results to improve the dynamic system of the planning and scheduling problem. As a case study, we use the simulation model of a dynamic flexible job shop to learn a solution strategy for the associated scheduling problem with deep reinforcement learning. Based on this, we were able to extract a decision tree that is superior to classical dispatching heuristics for a wide variety of scenarios. It also provides valuable information about the criteria for decision-making. Here we offer a new approach to analyzing and solving these problems - leading to an improvement in dynamic systems.
改进灵活作业车间动态调度的洞察驱动优化
计划和调度问题可能很难管理,而相关的优化问题往往过于复杂,无法实时解决。解决这个问题的典型方法是应用启发式策略,它执行得相当好。机器学习算法可以用来取代启发式算法,但这引发了获得无法解释的解决方案的问题。将强化学习与策略抽取技术相结合,可以产生可解释的结果,从而改善规划调度问题的动态系统。作为案例研究,我们使用动态柔性作业车间的仿真模型来学习深度强化学习的相关调度问题的解决策略。在此基础上,我们能够在各种场景中提取优于经典调度启发式的决策树。它还提供了有关决策标准的宝贵信息。在此,我们提供了一种分析和解决这些问题的新方法——导致动态系统的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC-PapersOnLine
IFAC-PapersOnLine Engineering-Control and Systems Engineering
CiteScore
1.70
自引率
0.00%
发文量
1122
期刊介绍: All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信