Asymptotics of estimators for structured covariance matrices

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Hendrik Paul Lopuhaä
{"title":"Asymptotics of estimators for structured covariance matrices","authors":"Hendrik Paul Lopuhaä","doi":"10.1016/j.jmva.2025.105443","DOIUrl":null,"url":null,"abstract":"<div><div>We show that the limiting variance of a sequence of estimators for a structured covariance matrix has a general form, that for linear covariance structures appears as the variance of a scaled projection of a random matrix that is of radial type, and a similar result is obtained for the corresponding sequence of estimators for the vector of variance components. These results are illustrated by the limiting behavior of estimators for a differentiable covariance structure in a variety of multivariate statistical models. We also derive a characterization for the influence function of corresponding functionals. Furthermore, we derive the limiting distribution and influence function of scale invariant mappings of such estimators and their corresponding functionals. As a consequence, the asymptotic relative efficiency of different estimators for the shape component of a structured covariance matrix can be compared by means of a single scalar and the gross error sensitivity of the corresponding influence functions can be compared by means of a single index. Similar results are obtained for estimators of the normalized vector of variance components. We apply our results to investigate how the efficiency, gross error sensitivity, and breakdown point of S-estimators for the normalized variance components are affected simultaneously by varying their cutoff value.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"208 ","pages":"Article 105443"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000387","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the limiting variance of a sequence of estimators for a structured covariance matrix has a general form, that for linear covariance structures appears as the variance of a scaled projection of a random matrix that is of radial type, and a similar result is obtained for the corresponding sequence of estimators for the vector of variance components. These results are illustrated by the limiting behavior of estimators for a differentiable covariance structure in a variety of multivariate statistical models. We also derive a characterization for the influence function of corresponding functionals. Furthermore, we derive the limiting distribution and influence function of scale invariant mappings of such estimators and their corresponding functionals. As a consequence, the asymptotic relative efficiency of different estimators for the shape component of a structured covariance matrix can be compared by means of a single scalar and the gross error sensitivity of the corresponding influence functions can be compared by means of a single index. Similar results are obtained for estimators of the normalized vector of variance components. We apply our results to investigate how the efficiency, gross error sensitivity, and breakdown point of S-estimators for the normalized variance components are affected simultaneously by varying their cutoff value.
结构化协方差矩阵估计量的渐近性
我们证明了结构化协方差矩阵的估计量序列的极限方差具有一般形式,对于线性协方差结构的估计量序列表现为径向型随机矩阵的缩放投影的方差,对于方差分量向量的相应估计量序列也得到了类似的结果。这些结果通过各种多元统计模型中可微协方差结构的估计量的极限行为来说明。我们还推导了相应泛函的影响函数的一个表征。在此基础上,导出了这些估计量及其相应泛函的尺度不变映射的极限分布和影响函数。因此,可以通过单个标量比较结构协方差矩阵形状分量的不同估计量的渐近相对效率,并且可以通过单个指标比较相应影响函数的粗误差灵敏度。对于方差分量的归一化向量的估计也得到了类似的结果。我们应用我们的结果来研究s估计器对归一化方差分量的效率、总误差灵敏度和击破点如何同时受到其截止值变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信