Continuous prediction of user dropout in a mobile mental health intervention program: An exploratory machine learning approach

Q2 Health Professions
Pinxiang Wang , Hanqi Chen , Zhouyu Li , Wenyao Xu , Yu-Ping Chang , Huining Li
{"title":"Continuous prediction of user dropout in a mobile mental health intervention program: An exploratory machine learning approach","authors":"Pinxiang Wang ,&nbsp;Hanqi Chen ,&nbsp;Zhouyu Li ,&nbsp;Wenyao Xu ,&nbsp;Yu-Ping Chang ,&nbsp;Huining Li","doi":"10.1016/j.smhl.2025.100565","DOIUrl":null,"url":null,"abstract":"<div><div>Mental health intervention can help to release individuals’ mental symptoms like anxiety and depression. A typical mental health intervention program can last for several months, people may lose interests along with the time and cannot insist till the end. Accurately predicting user dropout is crucial for delivering timely measures to address user disengagement and reduce its adverse effects on treatment. We develop a temporal deep learning approach to accurately predict dropout, leveraging advanced data augmentation and feature engineering techniques. By integrating interaction metrics from user behavior logs and semantic features from user self-reflections over a nine-week intervention program, our approach effectively characterizes user’s mental health intervention behavior patterns. The results validate the efficacy of temporal models for continuous dropout prediction.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100565"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Mental health intervention can help to release individuals’ mental symptoms like anxiety and depression. A typical mental health intervention program can last for several months, people may lose interests along with the time and cannot insist till the end. Accurately predicting user dropout is crucial for delivering timely measures to address user disengagement and reduce its adverse effects on treatment. We develop a temporal deep learning approach to accurately predict dropout, leveraging advanced data augmentation and feature engineering techniques. By integrating interaction metrics from user behavior logs and semantic features from user self-reflections over a nine-week intervention program, our approach effectively characterizes user’s mental health intervention behavior patterns. The results validate the efficacy of temporal models for continuous dropout prediction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信