{"title":"An adaptive multimodal fusion framework for smartphone-based medication adherence monitoring of Parkinson’s disease","authors":"Chongxin Zhong , Jinyuan Jia , Huining Li","doi":"10.1016/j.smhl.2025.100561","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring medication adherence for Parkinson’s disease (PD) patients is crucial to relieve patients’ symptoms and better customizing regimens according to patient’s clinical responses. However, traditional self-management approaches are often error-prone and have limited effectiveness in improving adherence. While smartphone-based solutions have been introduced to monitor various PD metrics, including medication adherence, these methods often rely on single-modality data or fail to fully leverage the advantages of multimodal integration. To address the issues, we present an adaptive multimodal fusion framework for monitoring medication adherence of PD based on a smartphone. Specifically, we segment and transform raw data from sensors to spectrograms. Then, we integrate multimodal data with quantification of their qualities and perform gradient modulation based on the contribution of each modality. Afterward, we monitor medication adherence in PD patients by detecting their medicine intake status. We evaluate the performance with the dataset from daily-life scenarios involving 455 patients. The results show that our work can achieve around 94% accuracy in medication adherence monitoring, indicating that our proposed framework is a promising tool to facilitate medication adherence monitoring in PD patients’ daily lives.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100561"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring medication adherence for Parkinson’s disease (PD) patients is crucial to relieve patients’ symptoms and better customizing regimens according to patient’s clinical responses. However, traditional self-management approaches are often error-prone and have limited effectiveness in improving adherence. While smartphone-based solutions have been introduced to monitor various PD metrics, including medication adherence, these methods often rely on single-modality data or fail to fully leverage the advantages of multimodal integration. To address the issues, we present an adaptive multimodal fusion framework for monitoring medication adherence of PD based on a smartphone. Specifically, we segment and transform raw data from sensors to spectrograms. Then, we integrate multimodal data with quantification of their qualities and perform gradient modulation based on the contribution of each modality. Afterward, we monitor medication adherence in PD patients by detecting their medicine intake status. We evaluate the performance with the dataset from daily-life scenarios involving 455 patients. The results show that our work can achieve around 94% accuracy in medication adherence monitoring, indicating that our proposed framework is a promising tool to facilitate medication adherence monitoring in PD patients’ daily lives.