An adaptive multimodal fusion framework for smartphone-based medication adherence monitoring of Parkinson’s disease

Q2 Health Professions
Chongxin Zhong , Jinyuan Jia , Huining Li
{"title":"An adaptive multimodal fusion framework for smartphone-based medication adherence monitoring of Parkinson’s disease","authors":"Chongxin Zhong ,&nbsp;Jinyuan Jia ,&nbsp;Huining Li","doi":"10.1016/j.smhl.2025.100561","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring medication adherence for Parkinson’s disease (PD) patients is crucial to relieve patients’ symptoms and better customizing regimens according to patient’s clinical responses. However, traditional self-management approaches are often error-prone and have limited effectiveness in improving adherence. While smartphone-based solutions have been introduced to monitor various PD metrics, including medication adherence, these methods often rely on single-modality data or fail to fully leverage the advantages of multimodal integration. To address the issues, we present an adaptive multimodal fusion framework for monitoring medication adherence of PD based on a smartphone. Specifically, we segment and transform raw data from sensors to spectrograms. Then, we integrate multimodal data with quantification of their qualities and perform gradient modulation based on the contribution of each modality. Afterward, we monitor medication adherence in PD patients by detecting their medicine intake status. We evaluate the performance with the dataset from daily-life scenarios involving 455 patients. The results show that our work can achieve around 94% accuracy in medication adherence monitoring, indicating that our proposed framework is a promising tool to facilitate medication adherence monitoring in PD patients’ daily lives.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100561"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring medication adherence for Parkinson’s disease (PD) patients is crucial to relieve patients’ symptoms and better customizing regimens according to patient’s clinical responses. However, traditional self-management approaches are often error-prone and have limited effectiveness in improving adherence. While smartphone-based solutions have been introduced to monitor various PD metrics, including medication adherence, these methods often rely on single-modality data or fail to fully leverage the advantages of multimodal integration. To address the issues, we present an adaptive multimodal fusion framework for monitoring medication adherence of PD based on a smartphone. Specifically, we segment and transform raw data from sensors to spectrograms. Then, we integrate multimodal data with quantification of their qualities and perform gradient modulation based on the contribution of each modality. Afterward, we monitor medication adherence in PD patients by detecting their medicine intake status. We evaluate the performance with the dataset from daily-life scenarios involving 455 patients. The results show that our work can achieve around 94% accuracy in medication adherence monitoring, indicating that our proposed framework is a promising tool to facilitate medication adherence monitoring in PD patients’ daily lives.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信